Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Physiol Biochem Pharmacol ; 185: 153-193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-32789789

RESUMEN

Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.


Asunto(s)
Señalización del Calcio , Neoplasias , Humanos , Señalización del Calcio/fisiología , Mitocondrias , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Muerte Celular , Proteínas de la Membrana/metabolismo , Calcio/metabolismo , Neoplasias/metabolismo
2.
J Nanobiotechnology ; 21(1): 469, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062461

RESUMEN

Over the past years, the development of innovative smart wound dressings is revolutionizing wound care management and research. Specifically, in the treatment of diabetic foot wounds, three-dimensional (3D) bioprinted patches may enable personalized medicine therapies. In the present work, a methacrylated hyaluronic acid (MeHA) bioink is employed to manufacture 3D printed patches to deliver small extracellular vesicles (sEVs) obtained from human mesenchymal stem cells (MSC-sEVs). The production of sEVs is maximized culturing MSCs in bioreactor. A series of in vitro analyses are carried out to demonstrate the influence of MSC-sEVs on functions of dermal fibroblasts and endothelial cells, which are the primary functional cells in skin repair process. Results demonstrate that both cell populations are able to internalize MSC-sEVs and that the exposure to sEVs stimulates proliferation and migration. In vivo experiments in a well-established diabetic mouse model of pressure ulcer confirm the regenerative properties of MSC-sEVs. The MeHA patch enhances the effectiveness of sEVs by enabling controlled release of MSC-sEVs over 7 days, which improve wound epithelialization, angiogenesis and innervation. The overall findings highlight that MSC-sEVs loading in 3D printed biomaterials represents a powerful technique, which can improve the translational potential of parental stem cell in terms of regulatory and economic impact.


Asunto(s)
Diabetes Mellitus , Vesículas Extracelulares , Animales , Ratones , Humanos , Ácido Hialurónico , Células Endoteliales , Úlcera , Células Madre , Vendajes
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983075

RESUMEN

Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have attracted growing interest as a possible novel therapeutic agent for the management of different cardiovascular diseases (CVDs). Hypoxia significantly enhances the secretion of angiogenic mediators from MSCs as well as sEVs. The iron-chelating deferoxamine mesylate (DFO) is a stabilizer of hypoxia-inducible factor 1 and consequently used as a substitute for environmental hypoxia. The improved regenerative potential of DFO-treated MSCs has been attributed to the increased release of angiogenic factors, but whether this effect is also mediated by the secreted sEVs has not yet been investigated. In this study, we treated adipose-derived stem cells (ASCs) with a nontoxic dose of DFO to harvest sEVs (DFO-sEVs). Human umbilical vein endothelial cells (HUVECs) treated with DFO-sEVs underwent mRNA sequencing and miRNA profiling of sEV cargo (HUVEC-sEVs). The transcriptomes revealed the upregulation of mitochondrial genes linked to oxidative phosphorylation. Functional enrichment analysis on miRNAs of HUVEC-sEVs showed a connection with the signaling pathways of cell proliferation and angiogenesis. In conclusion, mesenchymal cells treated with DFO release sEVs that induce in the recipient endothelial cells molecular pathways and biological processes strongly linked to proliferation and angiogenesis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Células Cultivadas , Deferoxamina/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Quelantes del Hierro/farmacología , Vesículas Extracelulares/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675268

RESUMEN

Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.


Asunto(s)
Diabetes Mellitus , Campos Electromagnéticos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Inflamación , Antiinflamatorios , Biofisica
5.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293399

RESUMEN

Atherosclerosis (AS), the main cause of many cardiovascular diseases (CVDs), is a progressive inflammatory disease characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. The result is the thickening and clogging of these vessel walls. Several cell types are directly involved in the pathological progression of AS. Among them, platelets represent the link between AS, inflammation, and thrombosis. Indeed, besides their pivotal role in hemostasis and thrombosis, platelets are key mediators of inflammation at injury sites, where they act by regulating the function of other blood and vascular cell types, including endothelial cells (ECs), leukocytes, and vascular smooth muscle cells (VSMCs). In recent years, increasing evidence has pointed to a central role of platelet-derived extracellular vesicles (P-EVs) in the modulation of AS pathogenesis. However, while the role of platelet-derived microparticles (P-MPs) has been significantly investigated in recent years, the same cannot be said for platelet-derived exosomes (P-EXOs). For this reason, this reviews aims at summarizing the isolation methods and biological characteristics of P-EXOs, and at discussing their involvement in intercellular communication in the pathogenesis of AS. Evidence showing how P-EXOs and their cargo can be used as biomarkers for AS is also presented in this review.


Asunto(s)
Aterosclerosis , Micropartículas Derivadas de Células , Exosomas , Trombosis , Humanos , Exosomas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliales/metabolismo , Aterosclerosis/metabolismo , Inflamación/metabolismo , Trombosis/metabolismo , Biomarcadores/metabolismo , Mediadores de Inflamación/metabolismo , Lípidos
6.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408912

RESUMEN

Early post-transplant is the critical phase for the success of hematopoietic stem cell transplantation (HSCT). New viral infections and the reactivations associated with complete ablation of the recipient's T-cell immunity and inefficient reconstitution of the donor-derived system represent the main risks of HSCT. To date, the pharmacological treatments for post-HSCT viral infection-related complications have many limitations. Adoptive cell therapy (ACT) represents a new pharmacological strategy, allowing us to reconstitute the immune response to infectious agents in the post-HSC period. To demonstrate the potential advantage of this novel immunotherapy strategy, we report three cases of pediatric patients and the respective central nervous system complications after donor lymphocyte infusion.


Asunto(s)
Enfermedades Transmisibles , Trasplante de Células Madre Hematopoyéticas , Neoplasias , Virosis , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Niño , Enfermedades Transmisibles/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia Adoptiva/efectos adversos , Linfocitos , Neoplasias/etiología , Virosis/etiología , Virosis/terapia
7.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557882

RESUMEN

Hybrid bone substitute made up of a 3D printed polyetheretherketone (PEEK) scaffold coated with methacrylated hyaluronic acid (MeHA)-hydroxyapatite (HAp) hydrogel is the objective of the present work. Development and characterization of the scaffold and of the MeHA-HAp after its infiltration and UV photocrosslinking have been followed by analyses of its biological properties using human mesenchymal stem cells (MSCs). Interconnected porous PEEK matrices were produced by fused deposition modeling (FDM) characterized by a reticular pattern with 0°/90° raster orientation and square pores. In parallel, a MeHA-HAp slurry has been synthesized and infiltrated in the PEEK scaffolds. The mechanical properties of the coated and pure PEEK scaffold have been evaluated, showing that the inclusion of MeHA-HAp into the lattice geometry did not significantly change the strength of the PEEK structure with Young's modulus of 1034.9 ± 126.1 MPa and 1020.0 ± 63.7 MPa for PEEK and PEEK-MeHA-HAp scaffolds, respectively. Human MSCs were seeded on bare and coated scaffolds and cultured for up to 28 days to determine the adhesion, proliferation, migration and osteogenic differentiation. In vitro results showed that the MeHA-HAp coating promotes MSCs adhesion and proliferation and contributes to osteogenic differentiation and extracellular matrix mineralization. This study provides an efficient solution for the development of a scaffold combining the great mechanical performances of PEEK with the bioactive properties of MeHA and HAp, having high potential for translational clinical applications.


Asunto(s)
Ácido Hialurónico , Osteogénesis , Humanos , Ácido Hialurónico/farmacología , Polietilenglicoles/farmacología , Polietilenglicoles/química , Regeneración Ósea , Cetonas/farmacología , Cetonas/química , Durapatita/farmacología , Durapatita/química , Impresión Tridimensional , Andamios del Tejido/química
8.
Mol Genet Metab ; 124(3): 210-215, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29895405

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive metabolic disorder of GABA catabolism. SSADH is a mitochondrial homotetrameric enzyme encoded by ALDH5A1 gene. We report the molecular characterization of ALDH5A1 gene in an Italian SSADHD patient, showing heterozygosity for four missense mutations: c.526G>A (p.G176R), c.538C>T (p.H180Y), c.709G>T (p.A237S) and c.1267A>T (p.T423S), the latter never described so far. The patient inherited c.526A in cis with c.538T from the mother and c.709T in cis with c.1267T from the father. To explore the effects of the two allelic arrangements on SSADH activity and protein level, wild type, single or double mutated cDNA constructs were expressed in a cell system. The p.G176R change, alone or in combination with p.H180Y, causes the abolishment of enzyme activity. Western blot analysis showed a strongly reduced amount of the p.176R-p.180Y double mutant protein, suggesting increased degradation. Indeed, in silico analyses confirmed high instability of this mutant homotetramer. Enzyme activity relative to the other p.423S-p.237S double mutant is around 30% of wt. Further in silico analyses on all the possible combinations of mutant monomers suggest the lowest stability for the tetramer constituted by p.176R-p.180Y monomers and the highest stability for that constituted by p.237S-p.423S monomers. The present study shows that when a common SNP, associated with a slight reduction of SSADH activity, is inherited in cis with a mutation showing no consequences on the enzyme function, the activity is strongly affected. In conclusion, the peculiar arrangement of four missense mutations occurring in this patient is responsible for the SSADHD phenotype.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/patología , Discapacidades del Desarrollo/patología , Mutación Missense , Polimorfismo de Nucleótido Simple , Succionato-Semialdehído Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Preescolar , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Estabilidad de Enzimas , Femenino , Heterocigoto , Humanos , Masculino , Linaje , Conformación Proteica , Succionato-Semialdehído Deshidrogenasa/química , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo
9.
Metab Brain Dis ; 32(5): 1383-1388, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28664505

RESUMEN

SSADH deficiency (SSADHD) is a rare autosomal recessively inherited metabolic disorder. It is associated with mutations of ALDH5A1 gene, coding for the homotetrameric enzyme SSADH. This enzyme is involved in γ-aminobutyric acid (GABA) catabolism, since it oxidizes succinic semialdehyde (SSA) to succinate. Mutations in ALDH5A1 gene result in the abnormal accumulation of γ-hydroxybutyrate (GHB), which is pathognomonic of SSADHD. In the present report, diagnosis of SSADHD in a three-month-old female was achieved by detection of high levels of GHB in urine. Sequence analysis of ALDH5A1 gene showed that the patient was a compound heterozygote for c.1226G > A (p.G409D) and the novel missense mutation, c.1498G > C (p.V500 L). By ALDH5A1 gene expression in transiently transfected HEK293 cells and enzyme activity assays, we demonstrate that the p.V500 L mutation, despite being conservative, produces complete loss of enzyme activity. In silico protein modelling analysis and evaluation of tetramer destabilizing energies suggest that structural impairment and partial occlusion of the access channel to the active site affect enzyme activity. These findings add further knowledge on the missense mutations associated with SSADHD and the molecular mechanisms underlying the loss of the enzyme activity.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Discapacidades del Desarrollo/genética , Succionato-Semialdehído Deshidrogenasa/deficiencia , Ácido gamma-Aminobutírico/análogos & derivados , Sitios de Unión , Simulación por Computador , ADN/genética , Femenino , Células HEK293 , Heterocigoto , Humanos , Lactante , Modelos Moleculares , Mutación/genética , Mutación Missense , Linaje , Oxibato de Sodio/orina , Succionato-Semialdehído Deshidrogenasa/genética , Ácido gamma-Aminobutírico/metabolismo
10.
Nucleic Acids Res ; 41(5): 3201-16, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23376935

RESUMEN

Little is known regarding the post-transcriptional networks that control gene expression in eukaryotes. Additionally, we still need to understand how these networks evolve, and the relative role played in them by their sequence-dependent regulatory factors, non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs). Here, we used an approach that relied on both phylogenetic sequence sharing and conservation in the whole mapped 3'-untranslated regions (3'-UTRs) of vertebrate species to gain knowledge on core post-transcriptional networks. The identified human hyper conserved elements (HCEs) were predicted to be preferred binding sites for RBPs and not for ncRNAs, namely microRNAs and long ncRNAs. We found that the HCE map identified a well-known network that post-transcriptionally regulates histone mRNAs. We were then able to discover and experimentally confirm a translational network composed of RNA Recognition Motif (RRM)-type RBP mRNAs that are positively controlled by HuR, another RRM-type RBP. HuR shows a preference for these RBP mRNAs bound in stem-loop motifs, confirming its role as a 'regulator of regulators'. Analysis of the transcriptome-wide HCE distribution revealed a profile of prevalently small clusters separated by unconserved intercluster RNA stretches, which predicts the formation of discrete small ribonucleoprotein complexes in the 3'-UTRs.


Asunto(s)
Regiones no Traducidas 3' , Proteínas ELAV/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Animales , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Histonas/genética , Humanos , Secuencias Invertidas Repetidas , Células MCF-7 , Biosíntesis de Proteínas , Alineación de Secuencia , Vertebrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA