Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 950
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 21(9): 1119-1133, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32719519

RESUMEN

The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here, we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function and fate decision in their steady state and during bacterial infection. Eight neutrophil populations were defined by distinct molecular signatures. The three mature peripheral blood neutrophil subsets arise from distinct maturing bone marrow neutrophil subsets. Driven by both known and uncharacterized transcription factors, neutrophils gradually acquire microbicidal capability as they traverse the transcriptional landscape, representing an evolved mechanism for fine-tuned regulation of an effective but balanced neutrophil response. Bacterial infection reprograms the genetic architecture of neutrophil populations, alters dynamic transitions between subpopulations and primes neutrophils for augmented functionality without affecting overall heterogeneity. In summary, these data establish a reference model and general framework for studying neutrophil-related disease mechanisms, biomarkers and therapeutic targets at single-cell resolution.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Escherichia coli/fisiología , Neutrófilos/fisiología , Peritonitis/inmunología , Análisis de la Célula Individual/métodos , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Homeostasis , Humanos , Ratones , Análisis de Secuencia de ARN
2.
Cell ; 153(5): 1025-35, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706740

RESUMEN

Unique among leukocytes, neutrophils follow daily cycles of release from and migration back into the bone marrow, where they are eliminated. Because removal of dying cells generates homeostatic signals, we explored whether neutrophil elimination triggers circadian events in the steady state. Here, we report that the homeostatic clearance of neutrophils provides cues that modulate the physiology of the bone marrow. We identify a population of CD62L(LO) CXCR4(HI) neutrophils that have "aged" in the circulation and are eliminated at the end of the resting period in mice. Aged neutrophils infiltrate the bone marrow and promote reductions in the size and function of the hematopoietic niche. Modulation of the niche depends on macrophages and activation of cholesterol-sensing nuclear receptors and is essential for the rhythmic egress of hematopoietic progenitors into the circulation. Our results unveil a process that synchronizes immune and hematopoietic rhythms and expand the ascribed functions of neutrophils beyond inflammation. PAPERFLICK:


Asunto(s)
Médula Ósea/fisiología , Ritmo Circadiano , Neutrófilos/citología , Neutrófilos/fisiología , Animales , Movimiento Celular , Senescencia Celular , Femenino , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Receptores Nucleares Huérfanos/metabolismo
3.
Nature ; 593(7859): 429-434, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34012082

RESUMEN

Gene-editing technologies, which include the CRISPR-Cas nucleases1-3 and CRISPR base editors4,5, have the potential to permanently modify disease-causing genes in patients6. The demonstration of durable editing in target organs of nonhuman primates is a key step before in vivo administration of gene editors to patients in clinical trials. Here we demonstrate that CRISPR base editors that are delivered in vivo using lipid nanoparticles can efficiently and precisely modify disease-related genes in living cynomolgus monkeys (Macaca fascicularis). We observed a near-complete knockdown of PCSK9 in the liver after a single infusion of lipid nanoparticles, with concomitant reductions in blood levels of PCSK9 and low-density lipoprotein cholesterol of approximately 90% and about 60%, respectively; all of these changes remained stable for at least 8 months after a single-dose treatment. In addition to supporting a 'once-and-done' approach to the reduction of low-density lipoprotein cholesterol and the treatment of atherosclerotic cardiovascular disease (the leading cause of death worldwide7), our results provide a proof-of-concept for how CRISPR base editors can be productively applied to make precise single-nucleotide changes in therapeutic target genes in the liver, and potentially in other organs.


Asunto(s)
Sistemas CRISPR-Cas , LDL-Colesterol/sangre , Edición Génica , Modelos Animales , Proproteína Convertasa 9/genética , Adenina/metabolismo , Animales , Células Cultivadas , Femenino , Hepatocitos/metabolismo , Humanos , Hígado/enzimología , Mutación con Pérdida de Función , Macaca fascicularis/sangre , Macaca fascicularis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Proproteína Convertasa 9/sangre , Proproteína Convertasa 9/metabolismo , Factores de Tiempo
4.
Am J Hum Genet ; 110(10): 1616-1627, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802042

RESUMEN

At least 5% of cancer diagnoses are attributed to a causal pathogenic or likely pathogenic germline genetic variant (hereditary cancer syndrome-HCS). These individuals are burdened with lifelong surveillance monitoring organs for a wide spectrum of cancers. This is associated with substantial uncertainty and anxiety in the time between screening tests and while the individuals are awaiting results. Cell-free DNA (cfDNA) sequencing has recently shown potential as a non-invasive strategy for monitoring cancer. There is an opportunity for high-yield cancer early detection in HCS. To assess clinical validity of cfDNA in individuals with HCS, representatives from eight genetics centers from across Canada founded the CHARM (cfDNA in Hereditary and High-Risk Malignancies) Consortium in 2017. In this perspective, we discuss operationalization of this consortium and early data emerging from the most common and well-characterized HCSs: hereditary breast and ovarian cancer, Lynch syndrome, Li-Fraumeni syndrome, and Neurofibromatosis type 1. We identify opportunities for the incorporation of cfDNA sequencing into surveillance protocols; these opportunities are backed by examples of earlier cancer detection efficacy in HCSs from the CHARM Consortium. We seek to establish a paradigm shift in early cancer surveillance in individuals with HCSs, away from highly centralized, regimented medical screening visits and toward more accessible, frequent, and proactive care for these high-risk individuals.


Asunto(s)
Ácidos Nucleicos Libres de Células , Síndromes Neoplásicos Hereditarios , Femenino , Humanos , Predisposición Genética a la Enfermedad , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/epidemiología , Pruebas Genéticas/métodos , Biopsia Líquida , Ácidos Nucleicos Libres de Células/genética
5.
Blood ; 143(11): 967-970, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38289232

RESUMEN

ABSTRACT: The root cause of sickle cell anemia has been known for 7 decades, yet no curative therapies have been available other than allogeneic bone marrow transplantation, for which applicability is limited. Two potentially curative therapies based on gene therapy and gene editing strategies have recently received US Food and Drug Administration approval. This review surveys the nature of these therapies and the opportunities and issues raised by the prospect of definitive genetically based therapies being available in clinical practice.


Asunto(s)
Anemia de Células Falciformes , Trasplante de Células Madre Hematopoyéticas , Humanos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Trasplante de Médula Ósea , Edición Génica , Terapia Genética/métodos
6.
Plant Cell ; 35(6): 1626-1653, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36477566

RESUMEN

The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked 12 groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long non-coding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.


Asunto(s)
Regulación de la Expresión Génica , ARN , ARN de Planta/genética , ARN/genética , Interferencia de ARN , Metilación , Biología
7.
Am J Hum Genet ; 109(8): 1347-1352, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931047

RESUMEN

Large-scale precision medicine research requires massive amounts of data representing people from all walks of life; thus, in the US, it is often multistate research. Significant legal and ethical quandaries arise as a result of the patchwork of laws states have enacted that may apply to research, are not preempted by federal law, and may impose requirements or provide participant rights and protections that differ from other states. Determining which state's laws apply, and under what circumstances, is not solved by the transition to a single-IRB model and researchers cannot simply choose one state's laws to apply uniformly. At a minimum, the current process of meeting each state's requirements could be made more reliable and efficient. To fundamentally change this status quo, however, requires action at multiple levels. Federally, well-known gaps in the Genetic Information Nondiscrimination Act should be closed, and a coherent system of compensation for research injury-including non-physical injuries-should be developed. States should clarify which of their laws are intended to apply to research and work collaboratively to harmonize them. At the level of individual research projects, numerous policies and procedures could be standardized through authoritative guidelines. Examples include clarifying the scope of broad consent, understanding and upholding Certificates of Confidentiality, offering individual research results responsibly, and consistently disseminating aggregate results to participants and the public. Overall, development of a choice of law framework specific to the research context could significantly promote clarity and consistency.


Asunto(s)
Confidencialidad , Medicina de Precisión , Humanos , Estados Unidos
8.
J Med Genet ; 61(8): 759-768, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38670634

RESUMEN

BACKGROUND: Pontocerebellar hypoplasia (PCH) may present with supratentorial phenotypes and is often accompanied by microcephaly. Damaging mutations in the X-linked gene CASK produce self-limiting microcephaly with PCH in females but are often lethal in males. CASK deficiency leads to early degeneration of cerebellar granule cells but its role in other regions of the brain remains uncertain. METHOD: We generated a conditional Cask knockout mice and deleted Cask ubiquitously after birth at different times. We examined the clinical features in several subjects with damaging mutations clustered in the central part of the CASK protein. We have performed phylogenetic analysis and RT-PCR to assess the splicing pattern within the same protein region and performed in silico structural analysis to examine the effect of splicing on the CASK's structure. RESULT: We demonstrate that deletion of murine Cask after adulthood does not affect survival but leads to cerebellar degeneration and ataxia over time. Intriguingly, damaging hemizygous CASK mutations in boys who display microcephaly and cerebral dysfunction but without PCH are known. These mutations are present in two vertebrate-specific CASK exons. These exons are subject to alternative splicing both in forebrain and hindbrain. Inclusion of these exons differentially affects the molecular structure and hence possibly the function/s of the CASK C-terminus. CONCLUSION: Loss of CASK function disproportionately affects the cerebellum. Clinical data, however, suggest that CASK may have additional vertebrate-specific function/s that play a role in the mammalian forebrain. Thus, CASK has an ancient function shared between invertebrates and vertebrates as well as novel vertebrate-specific function/s.


Asunto(s)
Guanilato-Quinasas , Ratones Noqueados , Animales , Guanilato-Quinasas/genética , Guanilato-Quinasas/química , Ratones , Masculino , Humanos , Femenino , Microcefalia/genética , Microcefalia/patología , Mutación , Exones/genética , Empalme Alternativo/genética , Filogenia , Cerebelo/metabolismo , Cerebelo/anomalías , Cerebelo/patología
9.
Diabetologia ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910151

RESUMEN

Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programmes are being increasingly emphasised. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk of (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in non-specialised settings. To inform this monitoring, JDRF in conjunction with international experts and societies developed consensus guidance. Broad advice from this guidance includes the following: (1) partnerships should be fostered between endocrinologists and primary-care providers to care for people who are IAb+; (2) when people who are IAb+ are initially identified there is a need for confirmation using a second sample; (3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; (4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; (5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and (6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasises significant unmet needs for further research on early-stage type 1 diabetes to increase the rigour of future recommendations and inform clinical care.

10.
Mol Microbiol ; 119(4): 401-422, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36760076

RESUMEN

Cyclic AMP (cAMP) signaling is essential to Mycobacterium tuberculosis (Mtb) pathogenesis. However, the roles of phosphodiesterases (PDEs) Rv0805, and the recently identified Rv1339, in cAMP homeostasis and Mtb biology are unclear. We found that Rv0805 modulates Mtb growth within mice, macrophages and on host-associated carbon sources. Mycobacterium bovis BCG grown on a combination of propionate and glycerol as carbon sources showed high levels of cAMP and had a strict requirement for Rv0805 cNMP hydrolytic activity. Supplementation with vitamin B12 or spontaneous genetic mutations in the pta-ackA operon restored the growth of BCGΔRv0805 and eliminated propionate-associated cAMP increases. Surprisingly, reduction of total cAMP levels by ectopic expression of Rv1339 restored only 20% of growth, while Rv0805 complementation fully restored growth despite a smaller effect on total cAMP levels. Deletion of an Rv0805 localization domain also reduced BCG growth in the presence of propionate and glycerol. We propose that localized Rv0805 cAMP hydrolysis modulates activity of a specialized pathway associated with propionate metabolism, while Rv1339 has a broader role in cAMP homeostasis. Future studies will address the biological roles of Rv0805 and Rv1339, including their impacts on metabolism, cAMP signaling and Mtb pathogenesis.


Asunto(s)
Mycobacterium tuberculosis , Hidrolasas Diéster Fosfóricas , Animales , Ratones , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Nucleótidos Cíclicos/metabolismo , Propionatos/metabolismo , Virulencia , Hidrólisis , Vacuna BCG/metabolismo , Glicerol/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo
11.
N Engl J Med ; 384(3): 205-215, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33283990

RESUMEN

BACKGROUND: Sickle cell disease is characterized by hemolytic anemia, pain, and progressive organ damage. A high level of erythrocyte fetal hemoglobin (HbF) comprising α- and γ-globins may ameliorate these manifestations by mitigating sickle hemoglobin polymerization and erythrocyte sickling. BCL11A is a repressor of γ-globin expression and HbF production in adult erythrocytes. Its down-regulation is a promising therapeutic strategy for induction of HbF. METHODS: We enrolled patients with sickle cell disease in a single-center, open-label pilot study. The investigational therapy involved infusion of autologous CD34+ cells transduced with the BCH-BB694 lentiviral vector, which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA (shmiR), allowing erythroid lineage-specific knockdown. Patients were assessed for primary end points of engraftment and safety and for hematologic and clinical responses to treatment. RESULTS: As of October 2020, six patients had been followed for at least 6 months after receiving BCH-BB694 gene therapy; median follow-up was 18 months (range, 7 to 29). All patients had engraftment, and adverse events were consistent with effects of the preparative chemotherapy. All the patients who could be fully evaluated achieved robust and stable HbF induction (percentage HbF/(F+S) at most recent follow-up, 20.4 to 41.3%), with HbF broadly distributed in red cells (F-cells 58.9 to 93.6% of untransfused red cells) and HbF per F-cell of 9.0 to 18.6 pg per cell. Clinical manifestations of sickle cell disease were reduced or absent during the follow-up period. CONCLUSIONS: This study validates BCL11A inhibition as an effective target for HbF induction and provides preliminary evidence that shmiR-based gene knockdown offers a favorable risk-benefit profile in sickle cell disease. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT03282656).


Asunto(s)
Anemia de Células Falciformes/terapia , Hemoglobina Fetal/biosíntesis , Terapia Genética , Interferencia de ARN , Proteínas Represoras/genética , gamma-Globinas/metabolismo , Adolescente , Adulto , Anemia de Células Falciformes/genética , Niño , Regulación hacia Abajo , Femenino , Hemoglobina Fetal/genética , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Humanos , Masculino , Proyectos Piloto , ARN Interferente Pequeño , Proteínas Represoras/metabolismo , Trasplante Autólogo , Adulto Joven , gamma-Globinas/genética
12.
J Virol ; 97(2): e0003923, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36749077

RESUMEN

Many viruses sequester the materials needed for their replication into discrete subcellular factories. For rotaviruses (RVs), these factories are called viroplasms, and they are formed in the host cell cytosol via the process of liquid-liquid phase separation (LLPS). The nonstructural protein 2 (NSP2) and its binding partner, nonstructural protein 5 (NSP5), are critical for viroplasm biogenesis. Yet it is not fully understood how NSP2 and NSP5 cooperate to form factories. The C-terminal region (CTR) of NSP2 (residues 291 to 317) is flexible, allowing it to participate in domain-swapping interactions that promote interoctamer interactions and, presumably, viroplasm formation. Molecular dynamics simulations showed that a lysine-to-glutamic acid change at position 294 (K294E) reduces NSP2 CTR flexibility in silico. To test the impact of reduced NSP2 CTR flexibility during infection, we engineered a mutant RV bearing this change (rRV-NSP2K294E). Single-cycle growth assays revealed a >1.2-log reduction in endpoint titers for rRV-NSP2K294E versus the wild-type control (rRV-WT). Using immunofluorescence assays, we found that rRV-NSP2K294E formed smaller, more numerous viroplasms than rRV-WT. Live-cell imaging experiments confirmed these results and revealed that rRV-NSP2K294E factories had delayed fusion kinetics. Moreover, NSP2K294E and several other CTR mutants formed fewer viroplasm-like structures in NSP5 coexpressing cells than did control NSP2WT. Finally, NSP2K294E exhibited defects in its capacity to induce LLPS droplet formation in vitro when incubated alongside NSP5. These results underscore the importance of NSP2 CTR flexibility in supporting the biogenesis of RV factories. IMPORTANCE Viruses often condense the materials needed for their replication into discrete intracellular factories. For rotaviruses, agents of severe gastroenteritis in children, factory formation is mediated in part by an octameric protein called NSP2. A flexible C-terminal region of NSP2 has been proposed to link several NSP2 octamers together, a feature that might be important for factory formation. Here, we created a change in NSP2 that reduced C-terminal flexibility and analyzed the impact on rotavirus factories. We found that the change caused the formation of smaller and more numerous factories that could not readily fuse together like those of the wild-type virus. The altered NSP2 protein also had a reduced capacity to form factory-like condensates in a test tube. Together, these results add to our growing understanding of how NSP2 supports rotavirus factory formation-a key step of viral replication.


Asunto(s)
Rotavirus , Proteínas no Estructurales Virales , Replicación Viral , Fosforilación , Rotavirus/química , Rotavirus/fisiología , Proteínas no Estructurales Virales/química
13.
Plant Physiol ; 192(2): 1016-1027, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36905371

RESUMEN

The Arabidopsis (Arabidopsis thaliana) BYPASS1 (BPS1) gene encodes a protein with no functionally characterized domains, and loss-of-function mutants (e.g. bps1-2 in Col-0) present a severe growth arrest phenotype that is evoked by a root-derived graft-transmissible small molecule that we call dalekin. The root-to-shoot nature of dalekin signaling suggests it could be an endogenous signaling molecule. Here, we report a natural variant screen that allowed us to identify enhancers and suppressors of the bps1-2 mutant phenotype (in Col-0). We identified a strong semi-dominant suppressor in the Apost-1 accession that largely restored shoot development in bps1 and yet continued to overproduce dalekin. Using bulked segregant analysis and allele-specific transgenic complementation, we showed that the suppressor is the Apost-1 allele of a BPS1 paralog, BYPASS2 (BPS2). BPS2 is one of four members of the BPS gene family in Arabidopsis, and phylogenetic analysis demonstrated that the BPS family is conserved in land plants and the four Arabidopsis paralogs are retained duplicates from whole genome duplications. The strong conservation of BPS1 and paralogous proteins throughout land plants, and the similar functions of paralogs in Arabidopsis, suggests that dalekin signaling might be retained across land plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Alelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenotipo , Filogenia , Raíces de Plantas/metabolismo
14.
Ann Neurol ; 94(2): 350-365, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37084040

RESUMEN

OBJECTIVE: We aimed to prospectively quantify changes in white matter morphology after neurobehavioral therapy (NBT) for functional seizures (FS) using neurite orientation dispersion and density imaging (NODDI). We hypothesized that patients with FS would exhibit white matter plasticity in the uncinate fasciculus, fornix/stria terminalis, cingulum, and corticospinal tract following NBT that would correlate with improvements in affective symptoms, postconcussive symptoms, and quality of life (QOL). METHODS: Forty-two patients with traumatic brain injury (TBI) and FS (TBI+FS) underwent NBT and provided pre-/postintervention neuroimaging and behavioral data; 47 controls with TBI without FS (TBI-only) completed the same measures but did not receive NBT. Changes in neurite density, orientation dispersion (orientation dispersion index [ODI]), and extracellular free water (FW) were compared between groups. RESULTS: Significant ODI increases in the left uncinate fasciculus in TBI+FS (mean difference = 0.017, p = 0.039) correlated with improvements in posttraumatic symptoms (r = -0.395, p = 0.013), QOL (r = 0.474, p = 0.002), emotional well-being (r = 0.524, p < 0.001), and energy (r = 0.474, p = 0.002). In TBI-only, ODI decreased (mean difference = -0.008, p = 0.047) and FW increased (mean difference = 0.011, p = 0.003) in the right cingulum. FW increases correlated with increased psychological problems (r = 0.383, p = 0.013). In TBI+FS, NBT resulted in FS decreases of 3.5 seizures per week. None of the imaging changes correlated with FS frequency. INTERPRETATION: We identified white matter changes after NBT in patients with FS that were associated with improved psychosocial functioning. NODDI could be incorporated into future mechanistic assessments of interventions in patients with FS. ANN NEUROL 2023;94:350-365.


Asunto(s)
Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Encéfalo , Calidad de Vida , Neuritas , Convulsiones/diagnóstico por imagen
15.
Am J Med Genet A ; 194(3): e63455, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921537

RESUMEN

Our understanding of genetic and phenotypic heterogeneity associated with the clinical spectrum of rare diseases continues to expand. Thorough phenotypic descriptions and model organism functional studies are valuable tools in dissecting the biology of the disease process. Kinesin genes are well known to be associated with specific disease phenotypes and a subset of kinesin genes, including KIF21A, have been associated with more than one disease. Here we report two patients with KIF21A variants identified by exome sequencing; one with biallelic variants, supporting a novel KIF21A related syndrome with recessive inheritance and the second report of this condition, and another with a heterozygous de novo variant allele representing a phenotypic expansion of the condition described to date. We provide detailed phenotypic information on both families, including a novel neuropathology finding of neuroaxonal dystrophy associated with biallelic variants in KIF21A. Additionally, we studied the dominant variant in Saccharomyces cerevisiae to assess variant pathogenicity and found that this variant appears to impair protein function. KIF21A associated disease has mounting evidence for phenotypic heterogeneity; further patients and study of an allelic series are required to define the phenotypic spectrum and further explore the molecular etiology for each of these conditions.


Asunto(s)
Cinesinas , Enfermedades del Sistema Nervioso , Humanos , Cinesinas/genética , Fenotipo , Mutación
16.
Immunity ; 42(1): 159-71, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25579427

RESUMEN

The cellular mechanisms controlling infection-induced emergency granulopoiesis are poorly defined. Here we found that reactive oxygen species (ROS) concentrations in the bone marrow (BM) were elevated during acute infection in a phagocytic NADPH oxidase-dependent manner in myeloid cells. Gr1(+) myeloid cells were uniformly distributed in the BM, and all c-kit(+) progenitor cells were adjacent to Gr1(+) myeloid cells. Inflammation-induced ROS production in the BM played a critical role in myeloid progenitor expansion during emergency granulopoiesis. ROS elicited oxidation and deactivation of phosphatase and tensin homolog (PTEN), resulting in upregulation of PtdIns(3,4,5)P3 signaling in BM myeloid progenitors. We further revealed that BM myeloid cell-produced ROS stimulated proliferation of myeloid progenitors via a paracrine mechanism. Taken together, our results establish that phagocytic NADPH oxidase-mediated ROS production by BM myeloid cells plays a critical role in mediating emergency granulopoiesis during acute infection.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Granulocitos/fisiología , Hematopoyesis , Células Mieloides/fisiología , Células Progenitoras Mieloides/fisiología , Enfermedad Aguda , Animales , Médula Ósea/microbiología , Médula Ósea/patología , Proliferación Celular , Células Cultivadas , Hematopoyesis/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Comunicación Paracrina , Fosfatos de Fosfatidilinositol/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
17.
Pediatr Blood Cancer ; 71(3): e30816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38110847

RESUMEN

BACKGROUND: Children treated with stem cell transplant (SCT) are routinely hospitalized for long periods where they are exposed to significant sleep and circadian disruptions. As nurses play a primary role in symptom management during SCT, we sought to understand their perspective on patient sleep and circadian disruptions, perceived barriers to a good sleep and circadian environment, and suggestions for improvement. PROCEDURE: Four focus groups were conducted with pediatric SCT nurses (N = 25 participants). A semistructured focus group guide was administered, with the discussions recorded and transcribed. A multistage thematic analysis combining prefigured and emergent dimensions was conducted. Our analysis focused on drawing comparisons within and across focus groups to understand the unique work experiences that participants had related to the patient's sleep and circadian environment. RESULTS: Three key themes emerged. First, nurses expressed a high awareness of how disruptive the hospital environment is for patients. Second, nurses described their extensive efforts to try to minimize the impact of these disruptions. Finally, they provided clear recommendations for how to improve upon these concerns, along with barriers that they perceive could impede implementation. CONCLUSIONS: Front-line caregivers on a pediatric SCT unit describe key contributors to sleep/circadian disturbances for patients. Within the constraints of the considerable medical needs of this patient population and the physical room/hospital environment, nurses strive to minimize these disruptions to the best of their ability. It is crucial that hospitals assess and remediate these disturbances for these children that have important implications for overall health.


Asunto(s)
Pacientes Internos , Sueño , Humanos , Niño , Grupos Focales , Cuidadores , Hospitales
18.
Health Expect ; 27(2): e14047, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613767

RESUMEN

BACKGROUND: Community health workers represent a critical part of the health outreach and services for migrant and seasonal farmworkers ('farmworkers') in rural areas of the United States. PURPOSE: We sought to identify adaptations to farmworker patient engagement and health outreach made by community health workers during the first 18 months of the COVID-19 pandemic. METHODS: In this qualitative study, we used semi-structured interviews with community health workers from August 2020 to February 2022 (n = 21). Two coders used thematic analysis to identify three themes related to the experiences of community health workers in conducting health education and outreach to farmworkers prior to and following the onset of the pandemic. FINDINGS: We found themes related to pre-pandemic outreach efforts to provide health education resource sharing with farmworkers and pandemic-related outreach efforts that included adoption of porch drops and distanced delivery of health education, adaptation of modes of health education and communication through technology and the internet, and taking on new roles related to COVID-19. Finally, we identified changes that reverted after the pandemic or will continue as adaptations. CONCLUSIONS: Community health workers created practice-based innovations in outreach in response to the COVID-19 pandemic. These innovations included new COVID-19 related roles and new modes of health education and outreach, including the use of digital resources. The changes developed for emergency use in COVID-19, particularly related to internet and technology, have likely altered how community health workers conduct outreach in North Carolina going forward. Funders, community health worker training programs, and researchers should take note of these innovations. PATIENT OR PUBLIC CONTRIBUTION: Community health workers who typically come from patient populations and provide critical navigation and connection with the health care system advised on the design and creation of this research project, including serving on an advisory board. Two authors have experience working as community health workers.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Agentes Comunitarios de Salud , Agricultores , Pandemias , North Carolina/epidemiología
19.
Dev Psychobiol ; 66(6): e22520, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38923527

RESUMEN

Maternal depression is a risk factor for future mental health problems in offspring, with stress-system function as a candidate vulnerability factor. Here we present initial validation of an online matching-task (MT) paradigm in young children exposed to maternal depression (N = 40), a first in stressor-paradigm research for this age group. Investigations of stress-system reactivity that can be conducted online are an innovative assessment approach, accelerated by the COVID-19 pandemic. Results indicate high feasibility, with a >75% data collection success rate across measures, similar-to or better-than in-person success rates in young children. Overall, the online MT elicited significant heart rate but not cortisol reactivity. Individual differences in child mental health symptoms were a moderator of reactivity to the stressor such that children with lower, but not higher, behavioral problems exhibited the typical pattern of cortisol reactivity to the online MT. Results are aligned with allostatic load models, which suggest downregulation of stress-system reactivity as a result of experiencing adversity and mental health vulnerability. Consistent with in-person research, this suggests that an early phenotype for the emergence of behavior problems may be linked to altered stress-system reactivity. Results hold potential clinical implications for intervention development and the future of online stress-system research. Trial Registration: Clinical Trial Registration: NCT04639557; (Building Regulation in Dual Generations-Telehealth Model [BRIDGE]).


Asunto(s)
Depresión , Estudios de Factibilidad , Hidrocortisona , Madres , Estrés Psicológico , Humanos , Femenino , Hidrocortisona/metabolismo , Estrés Psicológico/fisiopatología , Estrés Psicológico/metabolismo , Preescolar , Masculino , Depresión/fisiopatología , Hijo de Padres Discapacitados , Adulto , Frecuencia Cardíaca/fisiología , COVID-19
20.
Public Health Nurs ; 41(2): 193-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37994294

RESUMEN

Farm work is one of the nation's most hazardous occupations, and migrant and seasonal farmworkers face significant health inequities. Awareness and understanding of the needs of this population are crucial in assuring they receive appropriate support. Documentary programs can raise awareness of community member views to better inform services and advocacy efforts. Visions for the future of farm work were collected from farmworkers and persons supporting them through a community-based, participatory documentary project led by Student Action with Farmworkers (SAF) from 2021 to 2022. Seventy-nine submissions from participants in North and South Carolina, including text responses and file uploads, were collected and thematically analyzed. Five themes were identified: (1) employment benefits and conditions, (2) living conditions, (3) health access and quality, (4) dignity and visibility of farm work, and (5) policy change for a better future. The visions for the future of farm work expressed by these agricultural workers, advocates, and students raise important implications for agricultural communities, public health practitioners, researchers, funders, and policymakers. Application of these findings in the development and delivery of public health services for farmworkers has the potential to positively impact the morbidity and mortality rates of this at-risk population.


Asunto(s)
Agricultores , Migrantes , Humanos , Granjas , Factores de Riesgo , Estudiantes , Agricultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA