Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Gastroenterology ; 153(1): 63-76.e14, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28286209

RESUMEN

BACKGROUND & AIMS: Drugs that inhibit the erb-b2 receptor tyrosine kinase 2 (ERBB2 or HER2) are the standard treatment of patients with different types of cancer, including HER2-overexpressing gastroesophageal tumors. Unfortunately, cancer cells become resistant to these drugs, so overall these drugs provide little benefit to patients with these tumors. We investigated mechanisms that mediate resistance of esophageal adenocarcinoma (EAC) cells and patient-derived xenograft tumors to ERBB inhibitors. METHODS: We cultured primary tumor cells, isolated from EAC patient samples, and OE19 and OE33 EAC cell lines with trastuzumab (an inhibitor of HER2), with or without pertuzumab (which inhibits dimerization of HER2 with HER3) or a specific antibody against HER3 (anti-HER3). HER2 was knocked down by expression of small hairpin RNAs. In addition, cells were incubated with NRG1-ß, a mediator of HER2-HER3 signaling, or A83-01, an inhibitor of transforming growth factor beta (TGFß) signaling. Cells were analyzed for markers of the epithelial to mesenchymal transition (EMT) using flow cytometry, immunofluorescence, and quantitative reverse transcription polymerase chain reaction. We performed limiting dilution, transwell, and cell viability assays to study the functional effects of HER2 and HER3 inhibition and reactivation. We analyzed publicly available EAC gene expression datasets to correlate expression of ERBB genes with genes encoding epithelial and mesenchymal proteins. NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were given subcutaneous injections of AMC-EAC-007B cells and also given injections of single or combined inhibitors; growth of these patient-derived xenograft tumors was quantified. RESULTS: EAC cells incubated with trastuzumab decreased expression of epithelial markers (CD24, CD29, and CDH1) and increased expression of mesenchymal markers (CXCR4, VIM, ZEB1, SNAI2, and CDH2), compared with cells not exposed to trastuzumab, indicating induction of EMT. Addition of NRG1-ß to these cells restored their epithelial phenotype. Incubation of EAC cells with trastuzumab and pertuzumab accelerated the expression of EMT markers, compared with cells incubated with trastuzumab alone. EAC cells cultured for 2 months with a combination of trastuzumab and pertuzumab became resistant to chemotherapeutic agents (5-fluoruracil, carboplatin, cisplatin, eribulin, and paclitaxel), based on their continued viability, which was accompanied with an enhanced migratory capacity in transwell assays and clonogenicity in limiting dilution analyses. In comparisons of EAC gene expression patterns, we associated high expression of ERBB3 with an epithelial gene expression signature; expression of TGFß correlated with expression of EMT-related genes, and we found an inverse correlation between expression of TGFB1 and ERBB3. EAC cells incubated with ERBB inhibitors began to secrete ligands for the TGFß receptor and underwent EMT. Incubation of EAC cells with trastuzumab, followed by 10 days of incubation with the TGFß receptor inhibitor in the presence of trastuzumab, caused cells to regain an epithelial phenotype. EAC patient-derived xenograft tumors grew more slowly in mice given the combination of trastuzumab, pertuzumab, and the TGFß inhibitor than in mice given single agents or a combination of trastuzumab and pertuzumab. Tumors exposed to trastuzumab and pertuzumab expressed EMT markers and were poorly differentiated, whereas tumors exposed to the combination of trastuzumab, pertuzumab, and the TGFß inhibitor expressed epithelial markers and were more differentiated. CONCLUSIONS: EAC cells become resistant to trastuzumab and pertuzumab by activating TGFß signaling, which induces EMT. Agents that block TGFß signaling can increase the anti-tumor efficacies of trastuzumab and pertuzumab.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal , Neoplasias Esofágicas/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismo , Trastuzumab/farmacología , Adenocarcinoma/patología , Animales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular , Interacciones Farmacológicas , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Esofágicas/patología , Expresión Génica , Silenciador del Gen , Humanos , Ratones , Trasplante de Neoplasias , Neurregulina-1/farmacología , Cultivo Primario de Células , Pirazoles/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/genética , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/genética , Transducción de Señal/efectos de los fármacos , Tiosemicarbazonas/farmacología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/genética , Trastuzumab/uso terapéutico
2.
Eur J Immunol ; 45(1): 49-59, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25316312

RESUMEN

Cross-presentation defines the unique capacity of an APC to present exogenous Ag via MHC class I molecules to CD8(+) T cells. DCs are specialized cross-presenting cells and as such have a critical role in antitumor immunity. DCs are routinely found within the tumor microenvironment, but their capacity for endogenous or therapeutically enhanced cross-presentation is not well characterized. In this study, we examined the tumor and lymph node DC cross-presentation of a nominal marker tumor Ag, HA, expressed by the murine mesothelioma tumor AB1-HA. We found that tumors were infiltrated by predominantly CD11b(+) DCs with a semimature phenotype that could not cross-present tumor Ag, and therefore, were unable to induce tumor-specific T-cell activation or proliferation. Although tumor-infiltrating DCs were able to take up, process, and cross-present exogenous cell-bound and soluble Ags, this was significantly impaired relative to lymph node DCs. Importantly, however, systemic chemotherapy using gemcitabine reversed the defect in Ag cross-presentation of tumor DCs. These data demonstrate that DC cross-presentation within the tumor microenvironment is defective, but can be reversed by chemotherapy. These results have important implications for anticancer therapy, particularly regarding the use of immunotherapy in conjunction with cytotoxic chemotherapy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antimetabolitos Antineoplásicos/farmacología , Células Dendríticas/inmunología , Desoxicitidina/análogos & derivados , Mesotelioma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Presentación de Antígeno/genética , Antígenos de Neoplasias/genética , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Movimiento Celular , Técnicas de Cocultivo , Reactividad Cruzada/genética , Células Dendríticas/patología , Desoxicitidina/farmacología , Expresión Génica , Hemaglutininas/genética , Hemaglutininas/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Mesotelioma/genética , Mesotelioma/inmunología , Mesotelioma/patología , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Microambiente Tumoral , Gemcitabina
3.
Nat Rev Cancer ; 24(7): 480-497, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38886574

RESUMEN

Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.


Asunto(s)
Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Factores de Tiempo , Terapia Combinada , Animales
4.
STAR Protoc ; 5(2): 102948, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38642337

RESUMEN

Pre-clinical studies developing novel therapies to prevent cancer recurrence require appropriate surgical models. Here, we present a protocol for surgical debulking of subcutaneous tumors in mice, which allows for intraoperative application of immunotherapy-loaded biomaterials. We describe steps for inoculating tumor cells, anesthetizing mice, and performing surgery. We then detail procedures for applying biomaterial, bandaging mice, and data collection and analysis. The optimized bandaging regimen resolves the issue of wound dehiscence after surgery, for C57BL/6 mice, which interfere with surgical sites. For complete details on the use and execution of this protocol, please refer to Rwandamuriye et al.1.


Asunto(s)
Inmunoterapia , Ratones Endogámicos C57BL , Animales , Ratones , Inmunoterapia/métodos , Procedimientos Quirúrgicos de Citorreducción/métodos , Femenino , Neoplasias/inmunología , Neoplasias/terapia , Modelos Animales de Enfermedad
5.
Cell Rep Med ; 4(7): 101113, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37467718

RESUMEN

Recurrences frequently occur following surgical removal of primary tumors. In many cancers, adjuvant therapies have limited efficacy. Surgery provides access to the tumor microenvironment, creating an opportunity for local therapy, in particular immunotherapy, which can induce local and systemic anti-cancer effects. Here, we develop a surgically optimized biodegradable hyaluronic acid-based hydrogel for sustained intraoperative delivery of Toll-like receptor 3 agonist poly(I:C) and demonstrate that it significantly reduces tumor recurrence after surgery in multiple mouse models. Mechanistically, poly(I:C) induces a transient interferon alpha (IFNα) response, reshaping the tumor/wound microenvironment by attracting inflammatory monocytes and depleting regulatory T cells. We demonstrate that a pre-existing IFN signature predicts response to the poly(I:C) hydrogel, which sensitizes tumors to immune checkpoint therapy. The safety, immunogenicity, and surgical feasibility are confirmed in a veterinary trial in canine soft tissue tumors. The surgically optimized poly(I:C)-loaded hydrogel provides a safe and effective approach to prevent cancer recurrence.


Asunto(s)
Hidrogeles , Recurrencia Local de Neoplasia , Ratones , Animales , Perros , Hidrogeles/uso terapéutico , Recurrencia Local de Neoplasia/prevención & control , Inmunoterapia , Modelos Animales de Enfermedad , Microambiente Tumoral
6.
Anticancer Drugs ; 23(1): 139-40, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21934601

RESUMEN

A patient with metastatic ovarian cancer was treated with liposomal doxorubicin and carboplatin. She had an extravasation during liposomal doxorubicin infusion. Initially, she was treated conservatively with cold compresses and topical treatment. However, because of worsening of symptoms, she received dexrazoxane once daily for 3 days after which complete recovery occurred. This is the first casereport on symptomatic extravasation of liposomal doxorubicin treated with dexrazoxane.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Doxorrubicina/administración & dosificación , Extravasación de Materiales Terapéuticos y Diagnósticos/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Razoxano/uso terapéutico , Carboplatino/administración & dosificación , Esquema de Medicación , Femenino , Humanos , Infusiones Intravenosas , Persona de Mediana Edad
7.
Front Oncol ; 12: 849793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402250

RESUMEN

With immune checkpoint therapy (ICT) having reshaped the treatment of many cancers, the next frontier is to identify and develop novel combination therapies to improve efficacy. Previously, we and others identified beneficial immunological effects of the vitamin A derivative tretinoin on anti-tumour immunity. Although it is known that tretinoin preferentially depletes myeloid derived suppressor cells in blood, little is known about the effects of tretinoin on the tumour microenvironment, hampering the rational design of clinical trials using tretinoin in combination with ICT. Here, we aimed to identify how tretinoin changed the tumour microenvironment in mouse tumour models, using flow cytometry and RNAseq, and we sought to use that information to establish optimal dosing and scheduling of tretinoin in combination with several ICT antibodies in multiple cancer models. We found that tretinoin rapidly induced an interferon dominated inflammatory tumour microenvironment, characterised by increased CD8+ T cell infiltration. This phenotype completely overlapped with the phenotype that was induced by ICT itself, and we confirmed that the combination further amplified this inflammatory milieu. The addition of tretinoin significantly improved the efficacy of anti-CTLA4/anti-PD-L1 combination therapy, and staggered scheduling was more efficacious than concomitant scheduling, in a dose-dependent manner. The positive effects of tretinoin could be extended to ICT antibodies targeting OX40, GITR and CTLA4 monotherapy in multiple cancer models. These data show that tretinoin induces an interferon driven, CD8+ T cell tumour microenvironment that is responsive to ICT.

8.
Front Immunol ; 13: 872295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634282

RESUMEN

Antibodies that target immune checkpoints such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and the programmed cell death protein 1/ligand 1 (PD-1/PD-L1) are now a treatment option for multiple cancer types. However, as a monotherapy, objective responses only occur in a minority of patients. Chemotherapy is widely used in combination with immune checkpoint blockade (ICB). Although a variety of isolated immunostimulatory effects have been reported for several classes of chemotherapeutics, it is unclear which chemotherapeutics provide the most benefit when combined with ICB. We investigated 10 chemotherapies from the main canonical classes dosed at the clinically relevant maximum tolerated dose in combination with anti-CTLA-4/anti-PD-L1 ICB. We screened these chemo-immunotherapy combinations in two murine mesothelioma models from two different genetic backgrounds, and identified chemotherapies that produced additive, neutral or antagonistic effects when combined with ICB. Using flow cytometry and bulk RNAseq, we characterized the tumor immune milieu in additive chemo-immunotherapy combinations. 5-fluorouracil (5-FU) or cisplatin were additive when combined with ICB while vinorelbine and etoposide provided no additional benefit when combined with ICB. The combination of 5-FU with ICB augmented an inflammatory tumor microenvironment with markedly increased CD8+ T cell activation and upregulation of IFNγ, TNFα and IL-1ß signaling. The effective anti-tumor immune response of 5-FU chemo-immunotherapy was dependent on CD8+ T cells but was unaffected when TNFα or IL-1ß cytokine signaling pathways were blocked. Our study identified additive and non-additive chemotherapy/ICB combinations and suggests a possible role for increased inflammation in the tumor microenvironment as a basis for effective combination therapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Animales , Linfocitos T CD8-positivos , Fluorouracilo/uso terapéutico , Humanos , Ratones , Neoplasias/terapia , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/uso terapéutico
9.
BMJ Open ; 12(1): e057663, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078853

RESUMEN

INTRODUCTION: There is a strong theoretical rationale for combining checkpoint blockade with cytotoxic chemotherapy in pleural mesothelioma and other cancers. Two recent single-arm, phase 2 trials [DuRvalumab with chEmotherapy as first-line treAtment in advanced pleural Mesothelioma (DREAM) and Phase II multicenter study of anti-PD-L1, durvalumab, in combination with cisplatin and pemetrexed for the first-line treatment of unresectable malignant pleural mesothelioma (PrE0505)] combining the programmed death ligand-1 (PD-L1) inhibitor durvalumab with standard first-line chemotherapy exceeded prespecified safety and activity criteria to proceed to a phase 3 confirmatory trial to assess this combination. We present the protocol of the DREAM3R trial. METHODS AND ANALYSIS: This multicentre open-label randomised trial will recruit 480 treatment-naïve adults with advanced pleural mesothelioma, randomised (2:1) to either 3-weekly durvalumab 1500 mg plus 3-weekly doublet chemotherapy (cisplatin 75 mg/m2 or carboplatin, Area Under the Curve,AUC 5 and pemetrexed 500 mg/m2) 4-6 cycles, followed by 4-weekly durvalumab 1500 mg until disease progression, unacceptable toxicity or patient withdrawal; OR doublet chemotherapy alone for 4-6 cycles, followed by observation. The target accrual time is 27 months, with follow-up for an additional 24 months. This provides over 85% power if the true HR for overall survival (OS) is 0.70, with two-sided alpha of 0.05, assuming a median OS of 15 months in the control group. Randomisation is stratified by age (18-70 years vs >70), sex, histology (epithelioid vs non-epithelioid), platinum agent (cisplatin vs carboplatin) and region (USA vs Australia/New Zealand vs Other). The primary endpoint is OS. Secondary endpoints include progression-free survival, objective tumour response (by mRECIST V.1.1 and iRECIST), adverse events, health-related quality of life and healthcare resource use. Tertiary correlative objectives are to explore and validate potential prognostic and/or predictive biomarkers (including features identified in the DuRvalumab with chEmotherapy as first-line treAtment in advanced pleural Mesothelioma (DREAM) and PrE0505 studies, PD-L1 expression, tumour mutational burden, genomic characteristics and human leukocyte antigen subtypes) in tissue and serial blood samples. An imaging databank will be assembled for validation of radiological measures of response, and studies of possible radiomic biomarkers in mesothelioma. ETHICS AND DISSEMINATION: The protocol was approved by human research ethics review committees for all participating sites. Results will be disseminated in peer-reviewed journals and at scientific conferences. DRUG SUPPLY: AstraZeneca. PROTOCOL VERSION: CTC 0231 / TOGA 18/001 / PrE0506 3.0, 29 July 2021. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT04334759 ACTRN 12620001199909.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales , Protocolos de Quimioterapia Combinada Antineoplásica , Ensayos Clínicos Fase III como Asunto , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mesotelioma/tratamiento farmacológico , Mesotelioma/patología , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Adulto Joven
10.
Front Oncol ; 11: 672747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987104

RESUMEN

The success of immunotherapy that targets inhibitory T cell receptors for the treatment of multiple cancers has seen the anti-tumor immune response re-emerge as a promising biomarker of response to therapy. Longitudinal characterization of T cells in the tumor microenvironment (TME) helps us understand how to promote effective anti-tumor immunity. However, serial analyses at the tumor site are rarely feasible in clinical practice. Malignant pleural effusions (MPE) associated with thoracic cancers are an abnormal accumulation of fluid in the pleural space that is routinely drained for patient symptom control. This fluid contains tumor cells and immune cells, including lymphocytes, macrophages and dendritic cells, providing a window into the local tumor microenvironment. Recurrent MPE is common, and provides an opportunity for longitudinal analysis of the tumor site in a clinical setting. Here, we review the phenotype of MPE-derived T cells, comparing them to tumor and blood T cells. We discuss the benefits and limitations of their use as potential dynamic biomarkers of response to therapy.

11.
Front Immunol ; 11: 587014, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163002

RESUMEN

Immunotherapies have revolutionized cancer treatment. In particular, immune checkpoint therapy (ICT) leads to durable responses in some patients with some cancers. However, the majority of treated patients do not respond. Understanding immune mechanisms that underlie responsiveness to ICT will help identify predictive biomarkers of response and develop treatments to convert non-responding patients to responding ones. ICT primarily acts at the level of adaptive immunity. The specificity of adaptive immune cells, such as T and B cells, is determined by antigen-specific receptors. T cell repertoires can be comprehensively profiled by high-throughput sequencing at the bulk and single-cell level. T cell receptor (TCR) sequencing allows for sensitive tracking of dynamic changes in antigen-specific T cells at the clonal level, giving unprecedented insight into the mechanisms by which ICT alters T cell responses. Here, we review how the repertoire influences response to ICT and conversely how ICT affects repertoire diversity. We will also explore how changes to the repertoire in different anatomical locations can better correlate and perhaps predict treatment outcome. We discuss the advantages and limitations of current metrics used to characterize and represent TCR repertoire diversity. Discovery of predictive biomarkers could lie in novel analysis approaches, such as network analysis of amino acids similarities between TCR sequences. Single-cell sequencing is a breakthrough technology that can link phenotype with specificity, identifying T cell clones that are crucial for successful ICT. The field of immuno-sequencing is rapidly developing and cross-disciplinary efforts are required to maximize the analysis, application, and validation of sequencing data. Unravelling the dynamic behavior of the TCR repertoire during ICT will be highly valuable for tracking and understanding anti-tumor immunity, biomarker discovery, and ultimately for the development of novel strategies to improve patient outcomes.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Humanos , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia
12.
Front Immunol ; 11: 584423, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262762

RESUMEN

Immune checkpoint therapy (ICT) results in durable responses in individuals with some cancers, but not all patients respond to treatment. ICT improves CD8+ cytotoxic T lymphocyte (CTL) function, but changes in tumor antigen-specific CTLs post-ICT that correlate with successful responses have not been well characterized. Here, we studied murine tumor models with dichotomous responses to ICT. We tracked tumor antigen-specific CTL frequencies and phenotype before and after ICT in responding and non-responding animals. Tumor antigen-specific CTLs increased within tumor and draining lymph nodes after ICT, and exhibited an effector memory-like phenotype, expressing IL-7R (CD127), KLRG1, T-bet, and granzyme B. Responding tumors exhibited higher infiltration of effector memory tumor antigen-specific CTLs, but lower frequencies of regulatory T cells compared to non-responders. Tumor antigen-specific CTLs persisted in responding animals and formed memory responses against tumor antigens. Our results suggest that increased effector memory tumor antigen-specific CTLs, in the presence of reduced immunosuppression within tumors is part of a successful ICT response. Temporal and nuanced analysis of T cell subsets provides a potential new source of immune based biomarkers for response to ICT.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/inmunología , Memoria Inmunológica/inmunología , Animales , Antígenos de Neoplasias/inmunología , Biomarcadores/metabolismo , Línea Celular Tumoral , Granzimas/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA