Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39211191

RESUMEN

Pluripotent stem cell (SC)-derived islets offer hope as a renewable source for ß cell replacement for type 1 diabetes (T1D), yet functional and metabolic immaturity may limit their long-term therapeutic potential. Here, we show that limitations in mitochondrial transcriptional programming impede the formation and maturation of SC-derived ß (SC-ß) cells. Utilizing transcriptomic profiling, assessments of chromatin accessibility, mitochondrial phenotyping, and lipidomics analyses, we observed that SC-ß cells exhibit reduced oxidative and mitochondrial fatty acid metabolism compared to primary human islets that are related to limitations in key mitochondrial transcriptional networks. Surprisingly, we found that reductions in glucose- stimulated mitochondrial respiration in SC-islets were not associated with alterations in mitochondrial mass, structure, or genome integrity. In contrast, SC-islets show limited expression of targets of PPARIZ and PPARγ, which regulate mitochondrial programming, yet whose functions in ß cell differentiation are unknown. Importantly, treatment with WY14643, a potent PPARIZ agonist, induced expression of mitochondrial targets, improved insulin secretion, and increased the formation and maturation of SC-ß cells both in vitro and following transplantation. Thus, mitochondrial programming promotes the differentiation and maturation of SC-ß cells and may be a promising target to improve ß cell replacement efforts for T1D.

2.
J Vis Exp ; (199)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37782087

RESUMEN

Mitophagy is a quality control mechanism necessary to maintain optimal mitochondrial function. Dysfunctional ß-cell mitophagy results in insufficient insulin release. Advanced quantitative assessments of mitophagy often require the use of genetic reporters. The mt-Keima mouse model, which expresses a mitochondria-targeted pH-sensitive dual-excitation ratiometric probe for quantifying mitophagy via flow cytometry, has been optimized in ß-cells. The ratio of acidic-to-neutral mt-Keima wavelength emissions can be used to robustly quantify mitophagy. However, using genetic mitophagy reporters can be challenging when working with complex genetic mouse models or difficult-to-transfect cells, such as primary human islets. This protocol describes a novel complementary dye-based method to quantify ß-cell mitophagy in primary islets using MtPhagy. MtPhagy is a pH-sensitive, cell-permeable dye that accumulates in the mitochondria and increases its fluorescence intensity when mitochondria are in low pH environments, such as lysosomes during mitophagy. By combining the MtPhagy dye with Fluozin-3-AM, a Zn2+ indicator that selects for ß-cells, and Tetramethylrhodamine, ethyl ester (TMRE) to assess mitochondrial membrane potential, mitophagy flux can be quantified specifically in ß-cells via flow cytometry. These two approaches are highly complementary, allowing for flexibility and precision in assessing mitochondrial quality control in numerous ß-cell models.


Asunto(s)
Mitocondrias , Mitofagia , Animales , Ratones , Humanos , Mitofagia/fisiología , Mitocondrias/genética , Citometría de Flujo/métodos , Insulina
3.
Nat Commun ; 13(1): 2340, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487893

RESUMEN

The dynamin-like GTPases Mitofusin 1 and 2 (Mfn1 and Mfn2) are essential for mitochondrial function, which has been principally attributed to their regulation of fission/fusion dynamics. Here, we report that Mfn1 and 2 are critical for glucose-stimulated insulin secretion (GSIS) primarily through control of mitochondrial DNA (mtDNA) content. Whereas Mfn1 and Mfn2 individually were dispensable for glucose homeostasis, combined Mfn1/2 deletion in ß-cells reduced mtDNA content, impaired mitochondrial morphology and networking, and decreased respiratory function, ultimately resulting in severe glucose intolerance. Importantly, gene dosage studies unexpectedly revealed that Mfn1/2 control of glucose homeostasis was dependent on maintenance of mtDNA content, rather than mitochondrial structure. Mfn1/2 maintain mtDNA content by regulating the expression of the crucial mitochondrial transcription factor Tfam, as Tfam overexpression ameliorated the reduction in mtDNA content and GSIS in Mfn1/2-deficient ß-cells. Thus, the primary physiologic role of Mfn1 and 2 in ß-cells is coupled to the preservation of mtDNA content rather than mitochondrial architecture, and Mfn1 and 2 may be promising targets to overcome mitochondrial dysfunction and restore glucose control in diabetes.


Asunto(s)
ADN Mitocondrial , Mitocondrias , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , GTP Fosfohidrolasas/metabolismo , Glucosa/metabolismo , Homeostasis , Mitocondrias/metabolismo
4.
Endocrinology ; 163(11)2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36048448

RESUMEN

A central goal of physiological research is the understanding of cell-specific roles of disease-associated genes. Cre-mediated recombineering is the tool of choice for cell type-specific analysis of gene function in preclinical models. In the type 1 diabetes (T1D) research field, multiple lines of nonobese diabetic (NOD) mice have been engineered to express Cre recombinase in pancreatic ß cells using insulin promoter fragments, but tissue promiscuity remains a concern. Constitutive Ins1tm1.1(cre)Thor (Ins1Cre) mice on the C57/bl6-J background have high ß-cell specificity with no reported off-target effects. We explored whether NOD:Ins1Cre mice could be used to investigate ß-cell gene deletion in T1D disease modeling. We studied wild-type (Ins1WT/WT), Ins1 heterozygous (Ins1Cre/WT or Ins1Neo/WT), and Ins1 null (Ins1Cre/Neo) littermates on a NOD background. Female Ins1Neo/WT mice exhibited significant protection from diabetes, with further near-complete protection in Ins1Cre/WT mice. The effects of combined neomycin and Cre knockin in Ins1Neo/Cre mice were not additive to the Cre knockin alone. In Ins1Neo/Cre mice, protection from diabetes was associated with reduced insulitis at age 12 weeks. Collectively, these data confirm previous reports that loss of Ins1 alleles protects NOD mice from diabetes development and demonstrates, for the first time, that Cre itself may have additional protective effects. This has important implications for the experimental design and interpretation of preclinical T1D studies using ß-cell-selective Cre in NOD mice.


Asunto(s)
Diabetes Mellitus Tipo 1 , Dosificación de Gen , Células Secretoras de Insulina , Insulina , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevención & control , Femenino , Insulina/genética , Células Secretoras de Insulina/metabolismo , Integrasas , Ratones , Ratones Endogámicos NOD , Neomicina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA