Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 187: 106291, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37716514

RESUMEN

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disease caused by a CAG repeat expansion in exon1 of the huntingtin gene (HTT). This expansion leads to the production of N-terminal mutant huntingtin protein (mHtt) that contains an expanded polyglutamine tract, which is toxic to neurons and causes neurodegeneration. While the production of N-terminal mHtt can be mediated by proteolytic cleavage of full-length mHtt, abnormal splicing of exon1-intron1 of mHtt has also been identified in the brains of HD mice and patients. However, the proportion of aberrantly spliced exon1 mHTT in relation to normal mHTT exon remains to be defined. In this study, HTT exon1 production was examined in the HD knock-in (KI) pig model, which more closely recapitulates neuropathology seen in HD patient brains than HD mouse models. The study revealed that aberrant spliced HTT exon1 is also present in the brains of HD pigs, but it is expressed at a much lower level than the normally spliced HTT exon products. These findings suggest that careful consideration is needed when assessing the contribution of aberrantly spliced mHTT exon1 to HD pathogenesis, and further rigorous investigation is required.

2.
Hum Mol Genet ; 30(16): 1484-1496, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33929499

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are serious neurodegenerative diseases. Although their pathogenesis is unclear, the abnormal accumulation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological feature that exists in almost all patients. Thus far, there is no drug that can cure ALS/FTLD. Tetramethylpyrazine nitrone (TBN) is a derivative of tetramethylapyrazine, derived from the traditional Chinese medicine Ligusticum chuanxiong, which has been widely proven to have therapeutic effects on models of various neurodegenerative diseases. TBN is currently under clinical investigation for several indications including a Phase II trial of ALS. Here, we explored the therapeutic effect of TBN in an ALS/FTLD mouse model. We injected the TDP-43 M337V virus into the striatum of mice unilaterally and bilaterally, and then administered 30 mg/kg TBN intragastrically to observe changes in behavior and survival rate of mice. The results showed that in mice with unilateral injection of TDP-43M337V into the striatum, TBN improved motor deficits and cognitive impairment in the early stages of disease progression. In mice with bilateral injection of TDP-43M337V into the striatum, TBN not only improved motor function but also prolonged survival rate. Moreover, we show that its therapeutic effect may be through activation of the Akt/mTOR/GSK-3ß and AMPK/PGC-1α/Nrf2 signaling pathways. In summary, TBN is a promising agent for the treatment of ALS/FTLD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones
3.
J Therm Biol ; 106: 103251, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35636889

RESUMEN

Pikeperch (Sander lucioperca) is a sub-cold water fish species with high aquaculture potential. Its culture is seriously affected by increasing summer temperatures in recent years. Aim to investigate the effects of heat stress on apoptosis, oxidative stress, and the immune response in pikeperch. the fish were heat stressed at 30 °C, 32 °C and 34 °C for 2h respectively, followed by a 48h recovery period. The results showed that as temperature increased, the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the liver increased significantly. Meanwhile, acute heat stress results in progressive deleterious alterations in liver tissue, especially vascular rupture, blood infiltration, and severe vacuolation at 34 °C. TUNEL staining revealed that the apoptosis level increased significantly with the rising temperature. Acute heat stress significantly induced the mRNA expression of apoptosis-related genes, including tumor suppressor (p53), B-cell lymphoma-2 (bcl-2), bcl-2-associated X (bax), apoptotic protease activating factor-1 (apaf-1), cysteinyl aspartate specific proteinase (caspase-3 and caspase-9), and the expression of p53 was also positively correlated with bax expression and the bax/bcl-2 ratio. Additionally, caspase-3 and caspase-9 activity increased significantly at 34 °C compared with the control group (23 °C). Innate immune genes, including tumor necrosis factor (tnf-α), interleukins (il-7, il-8, il-10 and il-1ß), complement 3 (c3) were activated under acute heat stress, and H2O2 content was positively correlated with the expressions of tnf-α and il-1ß. After the temperature reached again 23 °C, most measured indexes in heat-stressed groups didn't return to stress-free levels, and liver tissue also didn't return to its normal state in the histopathology. It was found that p53-mediated mitochondrial apoptosis pathway was triggered in pikeperch under acute heat stress, and there may be a vicious cycle between oxidative stress and inflammation. In summary, the present study is helpful to elucidate how acute heat stress mediates liver injury of pikeperch through mitochondrial pathway, inflammation and oxidative stress.


Asunto(s)
Percas , Proteína p53 Supresora de Tumor , Animales , Apoptosis , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Caspasa 9/farmacología , Respuesta al Choque Térmico/genética , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Percas/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología
4.
Hum Mol Genet ; 28(4): 561-571, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30329048

RESUMEN

Monogenic mutations in the SHANK3 gene, which encodes a postsynaptic scaffold protein, play a causative role in autism spectrum disorder (ASD). Although a number of mouse models with Shank3 mutations have been valuable for investigating the pathogenesis of ASD, species-dependent differences in behaviors and brain structures post considerable challenges to use small animals to model ASD and to translate experimental therapeutics to the clinic. We have used clustered regularly interspersed short palindromic repeat/CRISPR-associated nuclease 9 to generate a cynomolgus monkey model by disrupting SHANK3 at exons 6 and 12. Analysis of the live mutant monkey revealed the core behavioral abnormalities of ASD, including impaired social interaction and repetitive behaviors, and reduced brain network activities detected by positron-emission computed tomography (PET). Importantly, these abnormal behaviors and brain activities were alleviated by the antidepressant fluoxetine treatment. Our findings provide the first demonstration that the genetically modified non-human primate can be used for translational research of therapeutics for ASD.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Fluoxetina/administración & dosificación , Proteínas del Tejido Nervioso/genética , Animales , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Conducta Animal/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Exones , Humanos , Relaciones Interpersonales , Macaca fascicularis/genética , Ratones , Mutación
5.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G827-G839, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32174132

RESUMEN

There is increasing evidence that microRNA (miRNA) abnormity is involved in the occurrence and the development of various malignancies, including colon cancer. MiRNA-524-5p has been reported to possess anticancer activity in various tumors, which function is seldom investigated in colon cancer cells. The aim of this study was to explore the effect of the miRNA-524-5p/with-no-lysine kinase 1 (WNK1) system on angiogenesis in a colon cancer cell line (HT-29 and COLO205 cells) and further investigate the potential mechanisms. We found miRNA-524-5p expression was relatively high in COLO205 cells and relatively low in HT-29 cells. Elevating miRNA-524-5p expression inhibited proliferation, induced cycle arrest, diminished vascular endothelial growth factor production, and thereby suppressed angiogenesis in HT-29 cells. WNK1 silencing exerted the ability of antiangiogenesis in HT-29 cells. Besides, miRNA-524-5p deficiency-induced angiogenesis was impeded by WNK1 silence in COLO205 cells. In a murine tumor model, miRNA-524-5p agomir treatment significantly suppressed colon cancer tumorigenicity with the downregulation of WNK1 expression. In summary, our results indicated that miRNA-524-5p inhibited angiogenesis in colon cancer cells via targeting WNK1.NEW & NOTEWORTHY MiRNA-524-5p inhibited angiogenesis in colon cancer cells via targeting with-no-lysine kinase 1.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , MicroARNs/metabolismo , Neovascularización Patológica/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Desnudos , MicroARNs/genética , Neoplasias Experimentales , Regulación hacia Arriba , Proteína Quinasa Deficiente en Lisina WNK 1/genética
7.
BMC Cancer ; 20(1): 999, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054783

RESUMEN

BACKGROUND: Cervical cancer is the second-most common gynecological cancer, early screening plays a key role in the diagnosis and treatment of cervical intraepithelial neoplasia (CIN). Sustained E7 protein expression is the pathological basis for CIN and cervical cancer. METHODS: We collected the cervical cell samples of women who visited the gynecological clinic of Peking Union Medical College Hospital between September 2018 and September 2019 and submitted them to the high-risk human papillomavirus (Hr-HPV) test. We performed a magnetic particle-based chemiluminescence enzyme immunoassay to analyze the HPV16/18 E7 protein level in CIN of different severities and compared the results with those of cervical pathology (gold standard) and the HPV test. RESULTS: The positive rate of HPV16/18 E7 protein increased with the severity of CIN: 26.6% in normal tissue, 58.3% in CIN1, and 70.6% in CIN2 or higher (CIN2+). For CIN2+, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the E7 protein were 70.6, 67.9, 52.2, and 82.3%, respectively. These values of the HPV test were 86.8, 44.5, 43.7, and 87.1%, respectively. With the combination of the E7 protein assay and HPV test, the specificity for diagnosing CIN2+ was 78.1%, which was significantly higher than that of the HPV test alone. CONCLUSIONS: HPV16/18 E7 protein level is correlated with the severity of CIN and has a high concordance rate with the pathological result. For cervical cancer screening, the combination of HPV16/18 E7 protein assay and HPV test improves the CIN diagnostic specificity, detection rate, and detection accuracy.


Asunto(s)
Papillomavirus Humano 16/patogenicidad , Papillomavirus Humano 18/patogenicidad , Displasia del Cuello del Útero/fisiopatología , Estudios de Casos y Controles , Detección Precoz del Cáncer , Femenino , Humanos
8.
Mol Pain ; 15: 1744806919847366, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30977423

RESUMEN

Neuropathic pain developing after peripheral or central nerve injury is the result of pathological changes generated through complex mechanisms. Disruption in the homeostasis of excitatory and inhibitory neurons within the central nervous system is a crucial factor in the formation of hyperalgesia or allodynia occurring with neuropathic pain. The central GABAergic pathway has received attention for its extensive distribution and function in neural circuits, including the generation and development of neuropathic pain. GABAergic inhibitory changes that occur in the interneurons along descending modulatory and nociceptive pathways in the central nervous system are believed to generate neuronal plasticity, such as synaptic plasticity or functional plasticity of the related genes or proteins, that is the foundation of persistent neuropathic pain. The primary GABAergic plasticity observed in neuropathic pain includes GABAergic synapse homo- and heterosynaptic plasticity, decreased synthesis of GABA, down-expression of glutamic acid decarboxylase and GABA transporter, abnormal expression of NKCC1 or KCC2, and disturbed function of GABA receptors. In this review, we describe possible mechanisms associated with GABAergic plasticity, such as central sensitization and GABAergic interneuron apoptosis, and the epigenetic etiologies of GABAergic plasticity in neuropathic pain. Moreover, we summarize potential therapeutic targets of GABAergic plasticity that may allow for successful relief of hyperalgesia from nerve injury. Finally, we compare the effects of the GABAergic system in neuropathic pain to other types of chronic pain to understand the contribution of GABAergic plasticity to neuropathic pain.


Asunto(s)
Neuralgia/metabolismo , Neuralgia/fisiopatología , Plasticidad Neuronal , Ácido gamma-Aminobutírico/metabolismo , Animales , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Epigénesis Genética , Humanos , Neuralgia/genética , Neuralgia/terapia , Transmisión Sináptica/fisiología
9.
Fish Shellfish Immunol ; 95: 659-669, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31706008

RESUMEN

Pikeperch (Sander lucioperca) is an economically important cool-water fish. In recent years, its cultivation has become threatened by higher temperatures in summer. We previously investigated the effects of heat stress on pikeperch liver under different temperatures, but the molecular mechanism of the heat-stress response is still unknown. This study applied consistent heat stress (29 °C, 0-48 h) to pikeperch juveniles, and a transcriptomic profile of pikeperch liver under heat stress (29 °C, 0 h) was performed by RNA-Seq. The antioxidant status, changes in liver histology, and antioxidant gene expression at different time points were examined. We identified 403 differentially expressed genes (DEGs), many of which were enriched in KEGG pathways, including protein processing in endoplasmic reticulum (ER), insulin signaling, and immune-related pathways. Among these, the most significant heat-stress-related pathway was protein processing in ER, indicating that this pathway is critical for the heat-stress response. After consistent heat stress at 29 °C, the total antioxidant capacity (T-AOC), the activities of total superoxide dismutase (T-SOD) and catalase (CAT), and the mRNA expression of manganese SOD (Mn-SOD), CAT, and glutathione peroxidase 1 and 7 (GPx1 and GPx7) in the treated groups showed the same trend of first increasing and then decreasing. Levels of malondialdehyde (MDA) content did not show significant differences between samples at 0 h and 3 h, but significantly increased by 6 h, and thereafter decreased. The liver tissue was normal at 0 h (29 °C); however, it suffered histological damage with increased duration of the heat stress. Above all, heat stress at 29 °C seemed to cause oxidative damage and dysfunction in pikeperch liver between 3 h and 48 h. The present results indicate that pikeperch have the capacity to defend against heat stress and maintain relative balance of oxidation-reduction reactions mainly through activating the antioxidant system, protein processing in ER, the insulin-signaling pathway, and immune-related pathways.


Asunto(s)
Respuesta al Choque Térmico , Hígado/metabolismo , Estrés Oxidativo , Percas/genética , Transcriptoma , Animales , Calor , Hígado/inmunología , Oxidación-Reducción , Percas/inmunología
10.
Med Sci Monit ; 25: 8797-8806, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31748499

RESUMEN

BACKGROUND The pathogenesis of chemotherapy-induced neuropathy, a dose-dependent adverse effect of cisplatin, involves mitochondrial dysfunction. PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy removes damaged mitochondria under various pathological conditions. The objective of this study was to determine mitophagy status and its effects on mitochondrial function and neuronal cell damage after cisplatin treatment using an in vitro model of cisplatin-induced neurotoxicity. MATERIAL AND METHODS PC12 cells were transfected with Parkin or Parkin siRNA using lentiviral particles and Lipofectamine 3000™, respectively, and then were exposed to 10 µM cisplatin. The expression of autophagic proteins was measured by Western blot analysis. Mitophagy in PC12 cells was detected by confocal microscopy analysis of mitochondria-lysosomes colocalization and autophagic flux. The effects of PINK1/Parkin-mediated mitophagy on cisplatin-induced neurotoxicity were assessed via mitochondrial function, neuritic length, nuclear diameter, and apoptosis. RESULTS Cisplatin activated PINK1/Parkin-mediated mitophagy in PC12 cells. Autophagic flux analysis revealed that cisplatin inhibits the late stage of the autophagic process. The knockdown of Parkin suppressed cisplatin-induced mitophagy, aggravating cisplatin-induced depolarization of mitochondria, cellular ATP deficits, reactive oxygen species outburst, neuritic shortening, nuclear diameter reduction, and apoptosis, while Parkin overexpression enhanced mitophagy and reversed these effects. CONCLUSIONS PINK1/Parkin-regulated mitophagy can protect against cisplatin-related neurotoxicity, suggesting therapeutic enhancement of mitophagy as a potential intervention for cisplatin-induced peripheral neuropathies. The interference of cisplatin with autophagosome-lysosome fusion may be partly responsible for cisplatin-induced neurotoxicity.


Asunto(s)
Cisplatino/toxicidad , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cisplatino/farmacología , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/genética , Células PC12 , Fosfohidrolasa PTEN/metabolismo , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Ubiquitina-Proteína Ligasas/administración & dosificación , Ubiquitina-Proteína Ligasas/genética
11.
Ecotoxicol Environ Saf ; 181: 130-137, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31176247

RESUMEN

The pikeperch Sander lucioperca is an economically important freshwater species that is currently threatened by higher summer temperatures caused by global warming. To clarify the physiological state of pikeperch reared under relatively high temperatures and to acquire valuable biomarkers to monitor heat stress in this species, 100 fish were subjected to five different temperature treatments, ranging from 23 °C (control) to 36 °C. The physiological and biochemical indexes of liver and blood were determined, and heat-shock cognate 70 kDa protein (Hsc70) mRNA expression profiles were analyzed. The results showed that the activities of superoxide dismutase, catalase, and glutathione peroxidase in heat-stressed pikeperch first increased and then decreased, exhibiting peaks at 34 °C, 28 °C, and 28 °C, respectively. The level of thiobarbituric acid-reactive substances (TBARS) in all experimental groups was significantly higher than that of the control. The numbers of red blood cells, the packed-cell volume, and the contents of hemoglobin were significantly higher in the 34 °C and 36 °C treatment groups. Under heat stress, the albumin, cholesterol, and triglycerides contents decreased with increasing temperatures. Real-time fluorescence-based quantitative RT-PCR showed that Hsc70 mRNA levels increased in all eight of the tested tissues under heat stress. Expression reached maximum levels at 34 °C in the muscle, heart and gill tissues, and at 36 °C in the other five tissues. These results demonstrate that several physiological and biochemical phenotypes, such as oxidative stress, antioxidant enzymes and molecular chaperones, could be important biomarkers of heat stress in pikeperch, and are potentially valuable to uncover the mechanisms of heat-stress responses in fish.


Asunto(s)
Proteínas de Peces/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Respuesta al Choque Térmico , Percas/metabolismo , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Recuento de Eritrocitos , Proteínas de Peces/genética , Glutatión Peroxidasa/metabolismo , Proteínas del Choque Térmico HSC70/genética , Respuesta al Choque Térmico/genética , Hemoglobinas/análisis , Hígado/enzimología , Hígado/metabolismo , Estrés Oxidativo , Percas/genética , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
12.
Tumour Biol ; 37(10): 13425-13433, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27460092

RESUMEN

Breast cancer stem cells (bCSCs) are considered an obstacle in breast cancer therapy because they exhibit long-term proliferative potential, phenotypic plasticity and high resistance to the current therapeutics. CXC chemokine receptor type 7 (CXCR7), which provides a growth advantage to breast cancer cells, has recently been demonstrated to play an important role in the maintenance of stem cell-like properties in the CSCs of glioblastoma and lung cancer, yet its role in bCSCs remains elusive. In this study, CD44+/CD24low bCSC-enriched cells (bCSCs for short) were isolated from MCF-7 cells, and CXCR7 was stably knocked down in bCSCs via lentivirus-mediated transduction with CXCR7 short hairpin RNA (shRNA). Knockdown of CXCR7 in bCSCs decreased the proportion of CD44+/CD24low cells, and markedly reduced the clonogenicity of the cells. Moreover, silencing of CXCR7 downregulated the expression of stem cell markers, such as aldehyde dehydrogenase 1 (ALDH1), Oct4, and Nanog. In addition, CXCR7 silencing in bCSCs suppressed cell proliferation and G1/S transition in vitro, and delayed tumor growth in vivo in a xenograft mouse model. In situ immunohistochemical analysis revealed a reduction in Ki-67 expression and enhanced apoptosis in the xenograft tumors as a result of CXCR7 silencing. Furthermore, combined treatment with CXCR7 silencing and epirubicin displayed an outstanding anti-tumor effect compared with either single treatment. Our study demonstrates that CXCR7 plays a critical role in the maintenance of stem cell-like properties and promotion of growth in bCSCs, and suggests that CXCR7 may be a candidate target for bCSCs in breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/patología , Receptores CXCR/metabolismo , Animales , Apoptosis , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular , Femenino , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores CXCR/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Front Pharmacol ; 15: 1394730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974036

RESUMEN

Background: There have been numerous studies on NMDA receptors as therapeutic targets for depression. However, so far, there has been no comprehensive scientometric analysis of this field. Thus, we conducted a scientometric analysis with the aim of better elucidating the research hotspots and future trends in this field. Methods: Publications on NMDAR in Depression between 2004 and 2023 were retrieved from the Web of Science Core Collection (WoSCC) database. Then, VOSviewer, CiteSpace, Scimago Graphica, and R-bibliometrix-were used for the scientometric analysis and visualization. Results: 5,092 qualified documents were identified to scientometric analysis. In the past 20 years, there has been an upward trend in the number of annual publications. The United States led the world in terms of international collaborations, publications, and citations. 15 main clusters were identified from the co-cited references analysis with notable modularity (Q-value = 0.7628) and silhouette scores (S-value = 0.9171). According to the keyword and co-cited references analysis, treatment-resistant depression ketamine (an NMDAR antagonist), oxidative stress, synaptic plasticity, neuroplasticity related downstream factors like brain-derived neurotrophic factor were the research hotspots in recent years. Conclusion: As the first scientometric analysis of NMDAR in Depression, this study shed light on the development, trends, and hotspots of research about NMDAR in Depression worldwide. The application and potential mechanisms of ketamine in the treatment of major depressive disorder (MDD) are still a hot research topic at present. However, the side effects of NMDAR antagonist like ketamine have prompted research on new rapid acting antidepressants.

14.
Front Plant Sci ; 15: 1297812, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434433

RESUMEN

Introduction: The potato (Solanum tuberosum L.), one of the most vital food crops worldwide, is sensitive to salinity. Brassinosteroids (BRs) are crucial in tolerance to various abiotic stresses. The constitutive photomorphogenesis and dwarf (CPD) gene encodes C-3 oxidase, which is a rate-limiting enzyme that controls the synthesis of BRs. Methods: In this study, we used StCPD gene overexpression (T) and un-transgenic (NT) plants obtained from our former research to illustrate adaptive resistance to salt stress at levels of phenotype; cell ultrastructure, physiology, and biochemistry; hormone; and transcription. Results: Results showed the accumulation of 2,4-epibrassionolide (EBL) in T potatoes. We found that under high salt situations, the changed Na+/K+ transporter gene expression was linked with the prevalent ionic responses in T plants, which led to lower concentrations of K+ and higher concentrations of Na+ in leaves. Furthermore, RNA-sequencing (RNA-seq) data elucidated that gene expressions in NT and T plants were significantly changed with 200-mM NaCl treatment for 24 h and 48 h, compared with the 0-h treatment. Functional enrichment analysis suggested that most of the differentially expressed genes (DEGs) were related to the regulation of BR-related gene expression, pigment metabolism process, light and action, and plant hormone signal transduction. Discussion: These findings suggested that StCPD gene overexpression can alleviate the damage caused by salt stress and enhance the salt resistance of potato plantlets. Our study provides an essential reference for further research on BR regulation of plant molecular mechanisms in potatoes with stress tolerance.

15.
Shock ; 61(3): 414-423, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150357

RESUMEN

ABSTRACT: Posthemorrhagic shock mesenteric lymph (PHSML) return-contributed excessive autophagy of vascular smooth muscle cells (VSMCs) is involved in vascular hyporeactivity, which is inhibited by stellate ganglion block (SGB) treatment. The contractile phenotype of VSMCs transforms into a synthetic phenotype after stimulation with excessive autophagy. Therefore, we hypothesized that SGB ameliorates PHSML-induced vascular hyporeactivity by inhibiting autophagy-mediated phenotypic transformation of VSMCs. To substantiate this hypothesis, a hemorrhagic shock model in conscious rats was used to observe the effects of SGB intervention or intravenous infusion of the autophagy inhibitor 3-methyladenine (3-MA) on intestinal blood flow and the expression of autophagy- and phenotype-defining proteins in mesenteric secondary artery tissues. We also investigated the effects of intraperitoneal administration of PHSML intravenous infusion and the autophagy agonist rapamycin (RAPA) on the beneficial effect of SGB. The results showed that hemorrhagic shock decreased intestinal blood flow and enhanced the expression of LC3 II/I, Beclin 1, and matrix metalloproteinase 2, which were reversed by SGB or 3-MA treatment. In contrast, RAPA and PHSML administration abolished the beneficial effects of SGB. Furthermore, the effects of PHSML or PHSML obtained from rats treated with SGB (PHSML-SGB) on cellular contractility, autophagy, and VSMC phenotype were explored. Meanwhile, the effects of 3-MA on PHSML and RAPA on PHSML-SGB were observed. The results showed that PHSML, but not PHSML-SGB, incubation decreased VSMC contractility and induced autophagy activation and phenotype transformation. Importantly, 3-MA administration reversed the adverse effects of PHSML, and RAPA treatment attenuated the effects of PHSML-SGB incubation on VSMCs. Taken together, the protective effect of SGB on vascular reactivity is achieved by inhibiting excessive autophagy-mediated phenotypic transformation of VSMCs to maintain their contractile phenotype.


Asunto(s)
Choque Hemorrágico , Ratas , Animales , Choque Hemorrágico/metabolismo , Músculo Liso Vascular , Metaloproteinasa 2 de la Matriz/farmacología , Ganglio Estrellado/metabolismo , Fenotipo , Autofagia , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
16.
Artículo en Inglés | MEDLINE | ID: mdl-39244722

RESUMEN

OBJECTIVE: To explore the effectiveness of HPV 16/18 E7 oncoprotein in detecting high-grade cervical intraepithelial neoplasia (CIN) and predicting disease outcomes in HPV 16/18-positive patients. METHODS: The present study was a cross-sectional study with a 2-year follow up. We collected 915 cervical exfoliated cell samples from patients who tested positive for HPV 16/18 in gynecologic clinics of three tertiary hospitals in Beijing from March 2021 to October 2022 for HPV 16/18 E7 oncoprotein testing. Subsequently, 2-year follow up of 408 patients with baseline histologic CIN1 or below were used to investigate the predictive role of HPV 16/18 E7 oncoprotein in determining HPV persistent infection and disease progression. RESULTS: The positivity rate of the HPV 16/18 E7 oncoprotein assay was 42.06% (249/592) in the inflammation/CIN 1 group and 85.45% (277/324) in the CIN2+ group. For CIN2+ detection, using the HPV 16/18 E7 oncoprotein assay combined with HPV 16/18 testing, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 85.45%, 57.94%, 52.57%, and 87.95%, respectively. During the 2-year follow up, the sensitivity, specificity, PPV, and NPV for predicting persistent HPV infection were 48.44%, 58.21%, 34.64%, and 71.18% in the baseline inflammation and CIN1 group. CONCLUSIONS: As a triage method for high-grade CIN screening in HPV 16/18-positive patients, HPV 16/18 E7 oncoprotein demonstrated a relatively high NPV, making it suitable for clinical use in triaging HPV 16/18-positive cases and potentially reducing the colposcopic referral rate. HPV 16/18 E7 oncoprotein exhibited a preferably predictive value in determining HPV infection outcomes and disease progression.

17.
Cell Biochem Funct ; 31(3): 263-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23086737

RESUMEN

The aims of this study were to assess the effects and potential mechanisms of parthenolide on the expression of vascular endothelial growth factor (VEGF), interleukin 8 (IL-8) and matrix metalloproteinase 9 (MMP-9) in human breast cancer cell line MDA-MB-231. After incubation with different concentrations of parthenolide for 24 h, MDA-MB-231 cells were collected, and the expressions of VEGF, IL-8 and MMP-9 were measured by real-time PCR and Western blot. The secretions of VEGF, IL-8 and MMP-9 in culture supernatant of MDA-MB-231 cells were then measured with ELISA assays. The NF-κB DNA-binding activity of breast cancer cells treated with parthenolide was analyzed using electrophoretic mobility assays. The real-time PCR and Western blot data showed that the expressions of VEGF, IL-8 and MMP-9 were significantly inhibited by parthenolide at both transcription level and protein level in MDA-MB-231 cells. ELISA results also confirmed these effects at a secretion level. The electrophoretic mobility assay results demonstrated that parthenolide can inhibit NF-κB DNA-binding activity of the breast cancer cells. Hence, the expression of VEGF, IL-8 and MMP-9 may be suppressed by parthenolide through the inhibition of NF-κB DNA-binding activity in MDA-MB-231 cells.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Expresión Génica/efectos de los fármacos , Interleucina-8/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Sesquiterpenos/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Femenino , Humanos , Interleucina-8/genética , Metaloproteinasa 9 de la Matriz/genética , Unión Proteica , Factor A de Crecimiento Endotelial Vascular/genética
18.
J Cancer ; 14(4): 665-675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057293

RESUMEN

Background: The purpose of this study was to clarify the effect of C-X-C chemokine receptor type 7 (CXCR7) on proliferation, migration, and angiogenesis by changing the expression levels of CXCR7 in colon cancer cells. Contrast-enhanced ultrasound technology was used to quantify tumor perfusion parameters in vivo for the detection of angiogenesis after the change of CXCR7 expression in colon cancer xenografts. Methods: To detect the expression of CXCR7 in colon cancer cells after overexpression or silencing of CXCR7. In addition, proliferation, migration, and angiogenesis were determined. The region of interest of the tumor was selected, and a time-intensity curve was drawn. Immunohistochemical staining was performed on tumor tissue sections, and the average microvessel density value was calculated. Results: Overexpression or silencing of CXCR7 altered the proliferation, migration, and luminal formation of Caco-2 and SW480 cells. In xenografts produced using CXCR7-overexpressing or -silent Caco-2 and SW480, respectively, the peak intensity and area under the curve were significantly different. The expression of CXCR7, VEGF, Ki67, and CD34 was decreased in CXCR7-silent cells, but increased in CXCR7-overexpressing cells. CXCR7 apparently affected angiogenesis through the extracellular signal regulated kinase pathway. Conclusions: The regulation of CXCR7 expression may affect the proliferation, migration, and luminal formation of Caco-2 and SW480 cells, indicating that CXCR7 may play an important role in colon cancer. Examination through contrast-enhanced ultrasound also demonstrated that the expression of CXCR7 is closely related to angiogenesis.

19.
Signal Transduct Target Ther ; 8(1): 327, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37661226

RESUMEN

Severe combined immunodeficiency (SCID) encompasses a range of inherited disorders that lead to a profound deterioration of the immune system. Among the pivotal genes associated with SCID, RAG1 and IL2RG play crucial roles. IL2RG is essential for the development, differentiation, and functioning of T, B, and NK cells, while RAG1 critically contributes to adaptive immunity by facilitating V(D)J recombination during the maturation of lymphocytes. Animal models carrying mutations in these genes exhibit notable deficiencies in their immune systems. Non-human primates (NHPs) are exceptionally well-suited models for biomedical research due to their genetic and physiological similarities to humans. Cytosine base editors (CBEs) serve as powerful tools for precisely and effectively modifying single-base mutations in the genome. Their successful implementation has been demonstrated in human cells, mice, and crop species. This study outlines the creation of an immunodeficient monkey model by deactivating both the IL2RG and RAG1 genes using the CBE4max system. The base-edited monkeys exhibited a severely compromised immune system characterized by lymphopenia, atrophy of lymphoid organs, and a deficiency of mature T cells. Furthermore, these base-edited monkeys were capable of hosting and supporting the growth of human breast cancer cells, leading to tumor formation. In summary, we have successfully developed an immunodeficient monkey model with the ability to foster tumor growth using the CBE4max system. These immunodeficiency monkeys show tremendous potential as valuable tools for advancing biomedical and translational research.


Asunto(s)
Linfopenia , Inmunodeficiencia Combinada Grave , Animales , Ratones , Inmunodeficiencia Combinada Grave/genética , Haplorrinos , Edición Génica , Proteínas de Homeodominio/genética
20.
J Womens Health (Larchmt) ; 32(10): 1136-1141, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37615520

RESUMEN

Objective: To investigate the triaging efficacy of the human papillomavirus (HPV) 16/18 E7 oncoprotein assay for high-grade cervical intraepithelial neoplasia (CIN2+) screening in HPV 16/18-positive patients in a tertiary hospital in China. Methods: We collected 476 cervical cell samples from women who tested positive for HPV 16/18 in the gynecological clinic of Peking Union Medical College Hospital between September 2018 and September 2022 and analyzed them by the HPV 16/18 E7 oncoprotein assay before colposcopy and biopsy. The study assessed the triaging efficacy of the HPV 16/18 E7 oncoprotein assay in HPV 16/18-positive patients by analyzing its performance against the gold standard of histologically confirmed CIN2+. Results: The positive rate of the HPV 16/18 E7 oncoprotein assay was 41.0% (114/278) in the negative for intraepithelial lesions and malignancy/CIN1 group and 80.3% (159/198) in the CIN2+ group. For triage of women with a positive HPV 16/18 test for CIN2+ detection, the HPV 16/18 E7 oncoprotein assay had a sensitivity, specificity, positive predictive value, and negative predictive value of 80.3%, 59.4%, 58.5%, and 80.9%, respectively. Furthermore, longitudinal follow-up of five patients showed a good correlation between the expression of the HPV 16/18 E7 oncoprotein and cervical lesion grades. Conclusions: As a triage method for HPV 16/18-positive patients, the HPV 16/18 E7 oncoprotein assay improves the specificity, reduces the colposcopy referral rate, and has the potential for long-term monitoring of high-grade CIN.


Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Embarazo , Humanos , Femenino , Papillomavirus Humano 16 , Estudios Transversales , Virus del Papiloma Humano , Neoplasias del Cuello Uterino/diagnóstico , Triaje , Infecciones por Papillomavirus/diagnóstico , Papillomavirus Humano 18 , Displasia del Cuello del Útero/diagnóstico , Colposcopía/métodos , Papillomaviridae , Proteínas Oncogénicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA