Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 366, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129877

RESUMEN

BACKGROUND: Macrophages and neutrophils are rapidly recruited around Schistosome eggs to form granulomas. Extracellular traps (ETs) of macrophages and neutrophils are part of the pathogen clearance armamentarium of leukocytes. Schistosome eggs possess the ability to resist attack by the host's immune cells and survive by employing various immune evasion mechanisms, including the release of extracellular vesicles (EVs). However, the specific mechanisms by which Schistosome egg-derived EVs (E-EVs) evade the immune response and resist attack from macrophage and neutrophil ETs remain poorly understood. In this study, we aimed to investigate the association between E-EVs and macrophage/neutrophil ETs. METHODS: EVs were isolated from the culture supernatant of S. japonicum eggs and treated macrophages and neutrophils with E-EVs and Sja-miR-71a. The formation of ETs was then observed. Additionally, we infected mice with S. japonicum, administered HBAAV2/9-Sja-miR-71a, and the formation of macrophage ETs (METs) and neutrophil ETs (NETs) in the livers was measured. Sema4D-knockout mice, RNA sequencing, and trans-well assay were used to clarify Sja-miR-71a in E-EVs inhibits METs and NETs formation via the Sema4D/ PPAR-γ/ IL-10 axis. RESULTS: Our findings revealed that E-EVs were internalized by macrophages and neutrophils, leading to the inhibition of METs and NETs formation. The highly expressed Sja-miR-71a in E-EVs targeted Sema4D, resulting in the up-regulation of IL-10 and subsequent inhibition of METs and NETs formation. Sema4D knockout up-regulated IL-10 expression and inhibited the formation of METs and NETs. Furthermore, we further demonstrated that Sja-miR-71a inhibits METs and NETs formation via the Sema4D/ PPAR-γ/ IL-10 axis. CONCLUSIONS: In summary, our findings provide new insights into the immune evasion abilities of Schistosome eggs by demonstrating their ability to inhibit the formation of METs and NETs through the secretion of EVs. This study enhances our understanding of the host-pathogen interaction and may have implications for the development of novel therapeutic approaches. Video Abstract.


Asunto(s)
Trampas Extracelulares , Vesículas Extracelulares , MicroARNs , Schistosoma japonicum , Ratones , Animales , Schistosoma japonicum/genética , Interleucina-10 , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Neutrófilos , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos
2.
Front Plant Sci ; 15: 1330426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405581

RESUMEN

Accurate estimation of desert vegetation transpiration is key to regulating desert water resources of desert ecosystems. Sap flow density (SFD) can indirectly reflect a tree's transpiration consumption, and it has been affected by climate warming and groundwater depths in desert ecosystems. Sap flow responses to meteorological conditions and groundwater depths are further affected by tree of different sizes. However, how meteorological factors and groundwater depths affects tree sap flow among tree sizes remains poorly understand. In this study, a 50 × 50 m P. euphratica stand was selected as a sample plot in the hinterland of the Taklamakan Desert, and the SFD of P. euphratica of different sizes was measured continuously using the thermal diffusion technique from May to October of 2021 and 2022. The results showed that SFD of large P. euphratica was consistently higher than that of small P. euphratica in 2021 and 2022. and the SFD of P. euphratica was significantly and positively correlated with solar radiation (Rad) and vapor pressure deficit (VPD), and the correlation was higher than that of the air temperature (Ta) and relative humidity (RH), and also showed a strong non-linear relationship. Analysis of the hour-by-hour relationship between P. euphratica SFD and VPD and Rad showed a strong hysteresis. Throughout the growing season, there was no significant relationship between SFD of P. euphratica and groundwater depth, VPD and Rad were still the main controlling factors of SFD in different groundwater depths. However, during the period of relative groundwater deficit, the effect of groundwater depth on the SFD of P. euphratica increased, and the small P. euphratica was more sensitive, indicating that the small P. euphratica was more susceptible to groundwater changes. This study emphasized that Rad and VPD were the main drivers of SFD during the growing season, as well as differences in the response of different sizes of P. euphratica to groundwater changes. The results of the study provide a scientific basis for future modeling of transpiration consumption in P. euphratica forests in desert oases, as well as the regulation and allocation of water resources.

3.
Sci Total Environ ; 933: 173166, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735315

RESUMEN

Lead (Pb) contamination in wheat grain is of great concern, especially in North China. Atmospheric deposition is a major contributor to Pb accumulation in wheat grain. Screening low Pb accumulating wheat varieties has been an effective method for addressing Pb contamination in wheat grain. However, identifying wheat varieties with low Pb accumulation based on foliar uptake of atmospheric Pb has been neglected. Therefore, two field trials with distinct atmospheric Pb deposition were conducted to screen for stable varieties with low Pb accumulation. It was verified that YB700 and CH58, which have high thousand-grain weights and stable low Pb accumulation in field 1 (0.19 and 0.13 mg kg-1) and field 2 (0.17 and 0.20 mg kg-1), respectively, were recommended for cultivation in atmospheric Pb contaminated farmlands in North China. Furthermore, indoor experiments were conducted to investigate Pb uptake by the roots and leaves of different wheat varieties. Our findings indicate that Pb accumulation in different wheat varieties is primarily influenced by foliar Pb uptake rather than root Pb uptake. Interestingly, there was a positive correlation (p < 0.05) between the Pb concentrations in leaves and the stomatal width and trichome length of the adaxial epidermal surface. Additionally, there is a positive correlation (p < 0.01) between the Pb concentration in the wheat grain and trichome length. In conclusion, the screening of wheat varieties with narrower stomatal widths or shorter trichomes based on foliar uptake pathways is an effective strategy for ensuring food safety in areas contaminated by atmospheric Pb.


Asunto(s)
Plomo , Hojas de la Planta , Contaminantes del Suelo , Triticum , Triticum/metabolismo , Plomo/metabolismo , Hojas de la Planta/metabolismo , China , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis
4.
Free Radic Biol Med ; 212: 295-308, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38141890

RESUMEN

Schistosomiasis, caused by Schistosoma spp., is a zoonotic parasitic disease affecting human health. Rattus norvegicus (rats) are a non-permissive host of Schistosoma, in which the worms cannot mature and cause typical egg granuloma. We previously demonstrated that inherent high levels of nitric oxide (NO), produced by inducible NO synthase (iNOS), is a key molecule in blocking the development of S. japonicum in rats. To further explore the mechanism of NO inhibiting S. japonicum development in rats, we performed S-nitrosocysteine proteomics of S. japonicum collected from infected rats and mice. The results suggested that S. japonicum in rats may have undergone endoplasmic reticulum (ER) stress. Interestingly, we found that the ER of S. japonicum in rats showed marked damage, while the ER of the worm in iNOS-/- rats and mice were relatively normal. Moreover, the expression of ER stress markers in S. japonicum from WT rats was significantly increased, compared with S. japonicum from iNOS-/- rats and mice. Using the NO donor sodium nitroprusside in vitro, we demonstrated that NO could induce ER stress in S. japonicum in a dose-dependent manner, and the NO-induced ER stress in S. japonicum could be inhibited by ER stress inhibitor 4-Phenyl butyric acid. We further verified that inhibiting ER stress of S. japonicum in rats promoted parasite development and survival. Furthermore, we demonstrated that NO-induced ER stress of S. japonicum was related to the efflux of Ca2+ from ER and the impairment of mitochondrial function. Collectively, these findings show that high levels of NO in rats could induce ER stress in S. japonicum by promoting the efflux of Ca2+ from ER and damaging the mitochondrial function, which block the worm development. Thus, this study further clarifies the mechanism of anti-schistosome in rats and provides potential strategies for drug development against schistosomiasis and other parasitosis.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Ratas , Ratones , Humanos , Animales , Óxido Nítrico , Mitocondrias , Estrés del Retículo Endoplásmico , Esquistosomiasis Japónica/tratamiento farmacológico , Esquistosomiasis Japónica/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA