Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(16): e2306200, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037679

RESUMEN

The transport properties of charge carriers in MXene, a promising material, have been studied using terahertz time-domain spectroscopy (THz-TDS) to examine its potential applications in optical and electronic devices. However, previous studies have been limited by narrow frequency ranges, which have hindered the understanding of the intrinsic mechanisms of carrier transport in MXenes. To address this issue, ultrabroadband THz-TDS with frequencies of up to 15 THz to investigate the complex photoconductances of MXene (Ti3C2Tx) films with different thicknesses are employed. The findings indicate that the electronic localization is substrate-dependent, and this effect decreases with an increase in the number of layers. This is attributed to the screening effect of the high carrier density in Ti3C2Tx. Additionally, the layer-independent photocarrier relaxations revealed by optical pump THz probe spectroscopy (OPTP) provide evidence of the carrier heating-induced screening effect. These results are significant for practical applications in both scientific research and various industries.

2.
Nanomicro Lett ; 16(1): 165, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564038

RESUMEN

With the increasing demand for terahertz (THz) technology in security inspection, medical imaging, and flexible electronics, there is a significant need for stretchable and transparent THz electromagnetic interference (EMI) shielding materials. Existing EMI shielding materials, like opaque metals and carbon-based films, face challenges in achieving both high transparency and high shielding efficiency (SE). Here, a wrinkled structure strategy was proposed to construct ultra-thin, stretchable, and transparent terahertz shielding MXene films, which possesses both isotropous wrinkles (height about 50 nm) and periodic wrinkles (height about 500 nm). Compared to flat film, the wrinkled MXene film (8 nm) demonstrates a remarkable 36.5% increase in SE within the THz band. The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm, and an average EMI SE/t of 700 dB µm-1 over the 0.1-10 THz. Theoretical calculations suggest that the wrinkled structure enhances the film's conductivity and surface plasmon resonances, resulting in an improved THz wave absorption. Additionally, the wrinkled structure enhances the MXene films' stretchability and stability. After bending and stretching (at 30% strain) cycles, the average THz transmittance of the wrinkled film is only 0.5% and 2.4%, respectively. The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA