Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38342685

RESUMEN

Perinatal depression, with a prevalence of 10 to 20% in United States, is usually missed as multiple symptoms of perinatal depression are common in pregnant women. Worse, the diagnosis of perinatal depression still largely relies on questionnaires, leaving the objective biomarker being unveiled yet. This study suggested a safe and non-invasive technique to diagnose perinatal depression and further explore its underlying mechanism. Considering the non-invasiveness and clinical convenience of electroencephalogram for mothers-to-be and fetuses, we collected the resting-state electroencephalogram of pregnant women at the 38th week of gestation. Subsequently, the difference in network topology between perinatal depression patients and healthy mothers-to-be was explored, with related spatial patterns being adopted to achieve the classification of pregnant women with perinatal depression from those healthy ones. We found that the perinatal depression patients had decreased brain network connectivity, which indexed impaired efficiency of information processing. By adopting the spatial patterns, the perinatal depression could be accurately recognized with an accuracy of 87.88%; meanwhile, the depression severity at the individual level was effectively predicted, as well. These findings consistently illustrated that the resting-state electroencephalogram network could be a reliable tool for investigating the depression state across pregnant women, and will further facilitate the clinical diagnosis of perinatal depression.


Asunto(s)
Depresión , Trastorno Depresivo , Femenino , Embarazo , Humanos , Depresión/diagnóstico , Cuero Cabelludo , Mujeres Embarazadas , Electroencefalografía
2.
Brain Res Bull ; 213: 110984, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806119

RESUMEN

This study introduces the Divergent Selective Focused Multi-heads Self-Attention Network (DSFMANet), an innovative deep learning model devised to automatically predict Hamilton Depression Rating Scale-17 (HAMD-17) scores in patients with depression. This model introduces a multi-branch structure for sub-bands and artificially configures attention focus factors on various branches, resulting in distinct attention distributions for different sub-bands. Experimental results demonstrate that when DSFMANet processes sub-band data, its performance surpasses current benchmarks in key metrics such as mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). This success is particularly evident in terms of MSE and MAE, where the performance of sub-band data is significantly superior, highlighting the model's potential in accurately predicting HAMD-17 scores. Concurrently, the experiment also compared the model's performance with sub-band and full-band data, affirming the superiority of the selective focus attention mechanism in electroencephalography (EEG) signal processing. DSFMANet, when utilizing sub-band data, exhibits higher data processing efficiency and reduced model complexity. The findings of this study underscore the significance of employing deep learning models based on sub-band analysis in depression diagnosis. The DSFMANet model not only effectively enhances the accuracy of depression diagnosis but also offers valuable research directions for similar applications in the future. This deep learning-based automated approach can effectively ascertain the HAMD-17 scores of patients with depression, thus offering more accurate and reliable support for clinical decision-making.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía , Humanos , Electroencefalografía/métodos , Depresión/diagnóstico , Atención/fisiología , Femenino , Masculino , Adulto , Escalas de Valoración Psiquiátrica/normas
3.
Brain Res Bull ; 215: 111017, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38914295

RESUMEN

Sleep staging plays an important role in the diagnosis and treatment of clinical sleep disorders. The sleep staging standard defines every 30 seconds as a sleep period, which may mean that there exist similar brain activity patterns during the same sleep period. Thus, in this work, we propose a novel time-related synchronization analysis framework named time-related multimodal sleep scoring model (TRMSC) to explore the potential time-related patterns of sleeping. In the proposed TRMSC, the time-related synchronization analysis is first conducted on the single channel electrophysiological signal, i.e., Electroencephalogram (EEG) and Electrooculogram (EOG), to explore the time-related patterns, and the spectral activation features are also extracted by spectrum analysis to obtain the multimodal features. With the extracted multimodal features, the feature fusion and selection strategy is utilized to obtain the optimal feature set and achieve robust sleep staging. To verify the effectiveness of the proposed TRMSC, sleep staging experiments were conducted on the Sleep-EDF dataset, and the experimental results indicate that the proposed TRMSC has achieved better performance than other existing strategies, which proves that the time-related synchronization features can make up for the shortcomings of traditional spectrum-based strategies and achieve a higher classification accuracy. The proposed TRMSC model may be helpful for portable sleep analyzers and provide a new analytical method for clinical sleeping research.


Asunto(s)
Encéfalo , Electroencefalografía , Fases del Sueño , Humanos , Electroencefalografía/métodos , Fases del Sueño/fisiología , Encéfalo/fisiología , Electrooculografía/métodos , Masculino , Adulto , Femenino , Polisomnografía/métodos
4.
Int J Neural Syst ; 34(4): 2450018, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372035

RESUMEN

Cognitive flexibility refers to the capacity to shift between patterns of mental function and relies on functional activity supported by anatomical structures. However, how the brain's structural-functional covarying is preconfigured in the resting state to facilitate cognitive flexibility under tasks remains unrevealed. Herein, we investigated the potential relationship between individual cognitive flexibility performance during the trail-making test (TMT) and structural-functional covariation of the large-scale multimodal covariance network (MCN) using magnetic resonance imaging (MRI) and electroencephalograph (EEG) datasets of 182 healthy participants. Results show that cognitive flexibility correlated significantly with the intra-subnetwork covariation of the visual network (VN) and somatomotor network (SMN) of MCN. Meanwhile, inter-subnetwork interactions across SMN and VN/default mode network/frontoparietal network (FPN), as well as across VN and ventral attention network (VAN)/dorsal attention network (DAN) were also found to be closely related to individual cognitive flexibility. After using resting-state MCN connectivity as representative features to train a multi-layer perceptron prediction model, we achieved a reliable prediction of individual cognitive flexibility performance. Collectively, this work offers new perspectives on the structural-functional coordination of cognitive flexibility and also provides neurobiological markers to predict individual cognitive flexibility.


Asunto(s)
Función Ejecutiva , Imagen por Resonancia Magnética , Humanos , Electroencefalografía , Vías Nerviosas/diagnóstico por imagen , Cognición , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
5.
Med Biol Eng Comput ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834855

RESUMEN

Cognitive disturbance in identifying, processing, and responding to salient or novel stimuli are typical attributes of schizophrenia (SCH), and P300 has been proven to serve as a reliable psychosis endophenotype. The instability of neural processing across trials, i.e., trial-to-trial variability (TTV), is getting increasing attention in uncovering how the SCH "noisy" brain organizes during cognition processes. Nevertheless, the TTV in the brain network remains unrevealed, notably how it varies in different task stages. In this study, resorting to the time-varying directed electroencephalogram (EEG) network, we investigated the time-resolved TTV of the functional organizations subserving the evoking of P300. Results revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. The TTV of cross-band time-varying network properties can efficiently recognize SCH (accuracy: 83.39%, sensitivity: 89.22%, and specificity: 74.55%) and evaluate the psychiatric symptoms (i.e., Hamilton's depression scale-24, r = 0.430, p = 0.022, RMSE = 4.891; Hamilton's anxiety scale-14, r = 0.377, p = 0.048, RMSE = 4.575). Our study brings new insights into probing the time-resolved functional organization of the brain, and TTV in time-varying networks may provide a powerful tool for mining the substrates accounting for SCH and diagnostic evaluation of SCH.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38837930

RESUMEN

Motor imagery (MI) is a high-level cognitive process that has been widely applied to clinical rehabilitation and brain-computer interfaces (BCIs). However, the decoding of MI tasks still faces challenges, and the neural mechanisms underlying its application are unclear, which seriously hinders the development of MI-based clinical applications and BCIs. Here, we combined EEG source reconstruction and Bayesian nonnegative matrix factorization (NMF) methods to construct large-scale cortical networks of left-hand and right-hand MI tasks. Compared to right-hand MI, the results showed that the significantly increased functional network connectivities (FNCs) mainly located among the visual network (VN), sensorimotor network (SMN), right temporal network, right central executive network, and right parietal network in the left-hand MI at the ß (13-30Hz) and all (8-30Hz) frequency bands. For the network properties analysis, we found that the clustering coefficient, global efficiency, and local efficiency were significantly increased and characteristic path length was significantly decreased in left-hand MI compared to right-hand MI at the ß and all frequency bands. These network pattern differences indicated that the left-hand MI may need more modulation of multiple large-scale networks (i.e., VN and SMN) mainly located in the right hemisphere. Finally, based on the spatial pattern network of FNC and network properties, we propose a classification model. The proposed model achieves a top classification accuracy of 78.2% in cross-subject two-class MI-BCI tasks. Overall, our findings provide new insights into the neural mechanisms of MI and a potential network biomarker to identify MI-BCI tasks.


Asunto(s)
Algoritmos , Teorema de Bayes , Interfaces Cerebro-Computador , Electroencefalografía , Imaginación , Red Nerviosa , Humanos , Masculino , Imaginación/fisiología , Electroencefalografía/métodos , Adulto Joven , Adulto , Femenino , Red Nerviosa/fisiología , Mano/fisiología , Corteza Cerebral/fisiología , Lateralidad Funcional/fisiología , Movimiento/fisiología
7.
Cogn Neurodyn ; 18(3): 1033-1045, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826670

RESUMEN

Although our knowledge of autism spectrum disorder (ASD) has been deepened, the accurate diagnosis of ASD from normal individuals is still left behind. In this study, we proposed to apply the spatial pattern of the network topology (SPN) to identify children with ASD from normal ones. Based on two independent batches of electroencephalogram datasets collected separately, the accurate recognition of ASD from normal children was achieved by applying the proposed SPN features. Since decreased long-range connectivity was identified for children with ASD, the SPN features extracted from the distinctive topological architecture between two groups in the first dataset were used to validate the capacity of SPN in classifying ASD, and the SPN features achieved the highest accuracy of 92.31%, which outperformed the other features e.g., power spectrum density (84.62%), network properties (76.92%), and sample entropy (73.08%). Moreover, within the second dataset, by using the model trained in the first dataset, the SPN also acquired the highest sensitivity in recognizing ASD, when compared to the other features. These results consistently illustrated that the functional brain network, especially the intrinsic spatial network topology, might be the potential biomarker for the diagnosis of ASD.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38837920

RESUMEN

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.

9.
Brain Res Bull ; 207: 110881, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232779

RESUMEN

Continuous electroencephalogram (cEEG) plays a crucial role in monitoring and postoperative evaluation of critical patients with extensive EEG abnormalities. Recently, the temporal variability of dynamic resting-state functional connectivity has emerged as a novel approach to understanding the pathophysiological mechanisms underlying diseases. However, little is known about the underlying temporal variability of functional connections in critical patients admitted to neurology intensive care unit (NICU). Furthermore, considering the emerging field of network physiology that emphasizes the integrated nature of human organisms, we hypothesize that this temporal variability in brain activity may be potentially linked to other physiological functions. Therefore, this study aimed to investigate network variability using fuzzy entropy in 24-hour dynamic resting-state networks of critical patients in NICU, with an emphasis on exploring spatial topology changes over time. Our findings revealed both atypical flexible and robust architectures in critical patients. Specifically, the former exhibited denser functional connectivity across the left frontal and left parietal lobes, while the latter showed predominantly short-range connections within anterior regions. These patterns of network variability deviating from normality may underlie the altered network integrity leading to loss of consciousness and cognitive impairment observed in these patients. Additionally, we explored changes in 24-hour network properties and found simultaneous decreases in brain efficiency, heart rate, and blood pressure between approximately 1 pm and 5 pm. Moreover, we observed a close relationship between temporal variability of resting-state network properties and other physiological indicators including heart rate as well as liver and kidney function. These findings suggest that the application of a temporal variability-based cEEG analysis method offers valuable insights into underlying pathophysiological mechanisms of critical patients in NICU, and may present novel avenues for their condition monitoring, intervention, and treatment.


Asunto(s)
Imagen por Resonancia Magnética , Neurología , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Electroencefalografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA