Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Environ Manage ; 355: 120365, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38460328

RESUMEN

Land use/land cover (LULC) change and climate change are interconnected factors that affect the ecological environment. However, there is a lack of quantification of the impacts of LULC change and climate change on landscape ecological risk under different shared socioeconomic pathways and representative concentration pathways (SSP-RCP) on the Mongolian Plateau (MP). To fill this knowledge gap and understand the current and future challenges facing the MP's land ecological system, we conducted an evaluation and prediction of the effects of LULC change and climate change on landscape ecological risk using the landscape loss index model and random forest method, considering eight SSP-RCP coupling scenarios. Firstly, we selected MCD12Q1 as the optimal LULC product for studying landscape changes on the MP, comparing it with four other LULC products. We analyzed the diverging patterns of LULC change over the past two decades and observed significant differences between Mongolia and Inner Mongolia. The latter experienced more intense and extensive LULC change during this period, despite similar climate changes. Secondly, we assessed changes in landscape ecological risk and identified the main drivers of these changes over the past two decades using a landscape index model and random forest method. The highest-risk zone has gradually expanded, with a 30% increase compared to 2001. Lastly, we investigated different characteristics of LULC change under different scenarios by examining future LULC products simulated by the FLUS model. We also simulated the dynamics of landscape ecological risks under these scenarios and proposed an adaptive development strategy to promote sustainable development in the MP. In terms of the impact of climate change on landscape ecological risk, we found that under the same SSP scenario, increasing RCP emission concentrations significantly increased the areas with high landscape ecological risk while decreasing areas with low risk. By integrating quantitative assessments and scenario-based modeling, our study provides valuable insights for informing sustainable land management and policy decisions in the region.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Ecosistema , Desarrollo Sostenible , Predicción
2.
Mol Ecol ; 32(24): 6924-6938, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37873915

RESUMEN

Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large-scale (across sites) and regional-scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low-productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.


Asunto(s)
Pradera , Microbiota , Microbiología del Suelo , Microbiota/genética , Hongos/genética , Bacterias/genética , Plantas/microbiología , Suelo
3.
J Environ Manage ; 348: 119375, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37883834

RESUMEN

Grasslands provide multiple ecosystem services (ESs) including provisioning, regulating, supporting, and cultural services that are largely affected by livestock grazing. Linking plant functional traits (PFTs) to ecosystem processes and functions has attracted extensive ecological research to explore the responses and inter-relations of ecosystem services to environmental and management changes. However, little information is available on the links between PFTs and ESs in most ecosystems. We conducted a grazing experiment to investigate the response of PFTs at different levels, including in plant organs (leaves and stems), individual plants, and the overall community in a typical steppe region of Inner Mongolia. Additionally, we examined the effect of animal grazing at four intensities (nil, light, moderate, and heavy) and explored the dynamic interconnections between PFTs and ecosystem services in grasslands. Our analysis revealed that the highest total ecosystem service and provisioning service were achieved under light- and moderate-grazing treatments, respectively. Heavy grazing also increased provisioning service but with a large decline in regulating and total ecosystem services. These changes in ESs were closely associated with grazing-induced variations in PFTs. Compared to no grazing, light grazing increased plant size-related functional traits, such as height, leaf length, leaf area, stem length, and the ratio of stem length to diameter. In contrast, heavy grazing decreased these PFTs. Provisioning and regulating services were determined by plant above-ground community function and structural properties, while supporting service was jointly affected by the below-ground community and soil properties. Our results indicate that light grazing should be recommended for the best total ESs, although moderate grazing may lead to high short-term economic benefits. Moreover, PFTs are powerful indicators for provisioning and regulating services. These findings provide a valuable reference for developing effective management practices to achieve targeted ESs using PFTs as indicators.


Asunto(s)
Ecosistema , Pradera , Animales , Plantas , China , Herbivoria , Suelo/química
4.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34769324

RESUMEN

Organisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is a representative species for studying the grazing effect on typical steppe plants in the Inner Mongolia Plateau. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Here, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. As a result, a total of 2357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified in RNA-Seq and qRT-PCR analyses that indicated the modulation of the Calvin-Benson cycle and photorespiration metabolic pathways. The key gene expression profiles encoding various proteins (e.g., ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase, etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection and identifying important questions to address in future transcriptome studies.


Asunto(s)
Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Herbivoria , Proteínas de Plantas/metabolismo , Poaceae/genética , Transcriptoma , Animales , Pradera , Proteínas de Plantas/genética , Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Ovinos
5.
Ecol Appl ; 30(3): e02052, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31837065

RESUMEN

The threats of land-use intensification to biodiversity have motivated considerable research directed toward understanding the relationship between biodiversity and ecosystem functioning (BEF). Functional diversity is deemed a better indicator than species diversity to clarify the BEF relationships. However, most tests of the BEF relationship have been conducted in highly controlled plant communities, with terrestrial animal communities largely unexplored. Additionally, most BEF studies examined the effects of biodiversity on ecosystem functions, with the effects of ecosystem functioning strength on biodiversity hardly considered. Based on a 6-yr grassland experiment in the typical steppe region of Inner Mongolia, we examined the variation of taxonomic diversity (TD) and functional diversity (FD) of both plant and arthropod communities, and their relations with grassland productivity, across three land management types (moderate grazing, mowing, and enclosure). We aimed to clarify the interrelations among plant FD, arthropod FD, grassland productivity, and soil factors. We found the following: (1) Grassland under mowing performed best in terms of sustaining a high TD and FD of plants and arthropods compared to that under grazing and enclosure. (2) The relationships between plant and arthropod diversity and productivity varied with management types. Plant TD and FD were negatively related, whereas arthropod FD was positively related with productivity under enclosure; plant FD, but not arthropod FD, was positively related with productivity under grazing; arthropod FD, but not plant FD, was negatively related with productivity under mowing. (3) Grassland productivity was positively interrelated with plant FD, but not plant TD; and was negatively interrelated with arthropod TD, but not arthropod FD across different management types. The respective positive vs. negative bidirectional relationships of productivity with plant diversity vs. arthropod diversity, were majorly a consequence of divergent grazing/mowing effects on plant vs. arthropod diversity. The results indicate that grazing increases plant diversity, but decreases arthropod diversity, whereas fall mowing provides a management strategy for conservation of both trophic levels. These results also provide new insights into the effects of land-use changes on biodiversity and ecosystem processes, and indicate the importance of incorporating the functional interrelations among different trophic groups in sustainable grassland management.


Asunto(s)
Artrópodos , Animales , Biodiversidad , China , Ecosistema , Pradera
6.
J Environ Manage ; 253: 109745, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31671323

RESUMEN

Mowing is a common practice in grassland management. It removes the majority of current year's aboveground plant biomass and thus substantial amounts of nutrients residing in plant tissues. The responses of plant aboveground biomass and nutrients to mowing stubble height is of great importance for developing sustainable mowing regimes, however, they are not well understood. We studied the effects of 4-year annual mowing at different height on plant aboveground biomass, plant N, P and N:P ratio, and soil nutrients in an Inner Mongolian steppe. Six stubble heights were set respectively at 14 cm (M14), 12 cm (M12), 10 cm (M10), 8 cm (M8), 6 cm (M6) and less than 0.3 cm (M0) height to ground surface. A no-mowing treatment (CK) was also included, making seven treatments. The results show that plant biomass production increased under light mowing (stubble height  > 12 cm) but decreased under heavy mowing (stubble height  < 6 cm), and the optimal stubble height for sustainable mowing was 6-12 cm. Plant N and P concentrations increased with mowing intensity (i.e. with the decrease of mowing stubble height). Plant N:P ratio decreased for some species, but no a directional change was detected in plant N:P ratio at the community level, nor in soil organic carbon and nutrient concentrations across the stubble height treatments. Our results indicate that plant biomass and N & P respond quickly to mowing height, whereas the response of soil chemical properties is insignificant over the 4-year period. To elucidate variation of species compensatory growth along mowing intensity gradient and the mutual feedback mechanism of soil-plant in mowing grassland, long-term study at permanent sites with changing stubble heights should be strengthened.


Asunto(s)
Carbono , Suelo , Biomasa , Pradera , Nitrógeno , Nutrientes , Poaceae
7.
Glob Chang Biol ; 20(1): 228-39, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23959970

RESUMEN

Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated CO2 has been tested against long-term experimental data. Here we tested how well the ecosystem model APSIM/AgPasture was able to simulate the results from a free air carbon dioxide enrichment (FACE) experiment on grazed pasture. At this FACE site, during 11 years of CO2 enrichment, a wide range in annual plant production response to CO2 (-6 to +28%) was observed. As well as running the full model, which includes three plant CO2 response functions (plant photosynthesis, nitrogen (N) demand and stomatal conductance), we also tested the influence of these three functions on model predictions. Model/data comparisons showed that: (i) overall the model over-predicted the mean annual plant production response to CO2 (18.5% cf 13.1%) largely because years with small or negative responses to CO2 were not well simulated; (ii) in general seasonal and inter-annual variation in plant production responses to elevated CO2 were well represented by the model; (iii) the observed CO2 enhancement in overall mean legume content was well simulated but year-to-year variation in legume content was poorly captured by the model; (iv) the best fit of the model to the data required all three CO2 response functions to be invoked; (v) using actual legume content and reduced N fixation rate under elevated CO2 in the model provided the best fit to the experimental data. We conclude that in temperate grasslands the N dynamics (particularly the legume content and N fixation activity) play a critical role in pasture production responses to elevated CO2 , and are processes for model improvement.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Fabaceae/fisiología , Modelos Teóricos , Poaceae/fisiología , Asteraceae/fisiología , Ecosistema , Nueva Zelanda , Fijación del Nitrógeno , Fotosíntesis
8.
Sci Total Environ ; 922: 171278, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417528

RESUMEN

Bio-organic fertilizer (BOF) was effective to promote the phytoremediation efficiency of heavy metal(loid)s-contaminated saline soil (HCSS) by improving rhizosphere soil properties, especially microbiome. However, there existed unclear impacts of BOF on plant metabolome and plant-driven manipulation on rhizosphere soil microbiota in HCSS, which were pivotal contributors to stress defense of plants trapped in adverse conditions. Here, a pot experiment was conducted to explore the mechanisms of BOF in improving alfalfa (Medicago sativa)-performing phytoremediation of HCSS. BOF application significantly increased the biomass (150.87-401.58 %) to support the augments of accumulation regarding heavy metal(loid)s (87.50 %-410.54 %) and salts (38.27 %-271.04 %) in alfalfa. BOF promoted nutrients and aggregates stability but declined pH of rhizosphere soil, accompanied by the boosts of rhizomicrobiota including increased activity, reshaped community structure, enriched plant growth promoting rhizobacteria (Blastococcus, Modestobacter, Actinophytocola, Bacillus, and Streptomyces), strengthened mycorrhizal symbiosis (Leohumicola, Funneliformis, and unclassified_f_Ceratobasidiaceae), optimized co-occurrence networks, and beneficial shift of keystones. The conjoint analysis of plant metabolome and physiological indices confirmed that BOF reprogrammed the metabolic processes (synthesis, catabolism, and long-distance transport of amino acid, lipid, carbohydrate, phytohormone, stress-resistant secondary metabolites, etc) and physiological functions (energy supply, photosynthesis, plant immunity, nutrients assimilation, etc) that are associated intimately. The consortium of root metabolome, soil metabolome, and soil microbiome revealed that BOF facilitated the exudation of metabolites correlated with rhizomicrobiota (structure, biomarker, and keystone) and rhizosphere oxidative status, e.g., fatty acyls, phenols, coumarins, phenylpropanoids, highlighting the plant-driven regulation on rhizosphere soil microbes and environment. By compiling various results and omics data, it was concluded that BOF favored the adaptation and phytoremediation efficiency of alfalfa by mediating the plant-soil-rhizomicrobiota interactions. The results would deepen understanding of the mechanisms by which BOF improved phytoremediation of HCSS, and provide theoretical guidance to soil amelioration and BOF application.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Fertilizantes/análisis , Biodegradación Ambiental , Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Microbiología del Suelo , Rizosfera , Raíces de Plantas/metabolismo
9.
Sci Total Environ ; 926: 172122, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569973

RESUMEN

Photodegradation via ultraviolet (UV) radiation is an important factor driving plant litter decomposition. Despite increasing attention to the role of UV photodegradation in litter decomposition, the specific impact of UV radiation on the plant litter decomposition stage within biogeochemical cycles remains unclear at regional and global scales. To clarify the variation rules of magnitude of UV effect on plant litter decomposition and their regulatory factors, we conducted a meta-analysis based on 54 published papers. Our results indicated that UV significantly promoted the mass loss of litter by facilitating decay of carbonaceous fractions and release of nitrogen and phosphorus. The promotion effect varied linearly or non-linearly with the time that litter exposed to UV, and with climatic factors. The UV effect on litter decomposition decreased first than increased on precipitation and temperature gradients, reaching its minimum in the area with a precipitation of 400-600 mm, and a temperature of 15-20 °C. This trend might be attributed to a potential equilibrium between the photofacilitation and photo-inhibition effects of UV under this condition. This variation in UV effect on precipitation gradient was in agreement with the fact that UV photodegradation effect was weakest in grassland ecosystems compared to that in forest and desert ecosystems. In addition, initial litter quality significantly influenced the magnitude of UV effect, but had no influence on the correlation between UV effect and climate gradient. Litter with lower initial nitrogen and lignin content shown a greater photodegradation effect, whereas those with higher hemicellulose and cellulose content had a greater photodegradation effect. Our study provides a comprehensive understanding of photodegradation effect on plant litter decomposition, indicates potentially substantial impacts of global enhancements of litter decomposition by UV, and highlights the necessity to quantify the contribution of photochemical minerallization pathway and microbial degradation pathway in litter decomposition.


Asunto(s)
Ecosistema , Rayos Ultravioleta , Hojas de la Planta/metabolismo , Plantas/metabolismo , Clima Desértico , Nitrógeno/metabolismo
10.
Front Microbiol ; 14: 1113157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007478

RESUMEN

The decoupling of microbial functional and taxonomic components refers to the phenomenon that a drastic change in microbial taxonomic composition leads to no or only a gentle change in functional composition. Although many studies have identified this phenomenon, the mechanisms underlying it are still unclear. Here we demonstrate, using metagenomics data from a steppe grassland soil under different grazing and phosphorus addition treatments, that there is no "decoupling" in the variation of taxonomic and metabolic functional composition of the microbial community within functional groups at species level. In contrast, the high consistency and complementarity between the abundance and functional gene diversity of two dominant species made metabolic functions unaffected by grazing and phosphorus addition. This complementarity between the two dominant species shapes a bistability pattern that differs from functional redundancy in that only two species cannot form observable redundancy in a large microbial community. In other words, the "monopoly" of metabolic functions by the two most abundant species leads to the disappearance of functional redundancy. Our findings imply that for soil microbial communities, the impact of species identity on metabolic functions is much greater than that of species diversity, and it is more important to monitor the dynamics of key dominant microorganisms for accurately predicting the changes in the metabolic functions of the ecosystems.

11.
Environ Pollut ; 307: 119559, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35654253

RESUMEN

Arbuscular mycorrhizal fungi (AMF) and plant rhizosphere microbes reportedly enhance plant tolerance to abiotic stresses and promote plant growth in contaminated soils. The co-contamination of soil by heavy metals (e.g., Cd) and rare earth elements (e.g., La) represents a severe environmental problem. Although the influence of AMF in the phytoremediation of contaminated soils is well documented, the underlying interactive mechanisms between AMF and rhizosphere microbes are still unclear. We conducted a greenhouse pot experiment to evaluate the effects of AMF (Claroideoglomus etunicatum) on maize growth, nutrient and metal uptake, rhizosphere microbial community, and functional genes in soils with separate and combined applications of Cd and La. The purpose of this experiment was to explore the mechanism of AMF affecting plant growth and metal uptake via interactions with rhizosphere microbes. We found that C. etunicatum (i) significantly enhanced plant nutritional level and biomass and decreased metal concentration in the co-contaminated soil; (ii) significantly altered the structure of maize rhizosphere bacterial and fungal communities; (iii) strongly enriched the abundance of carbohydrate metabolism genes, ammonia and nitrate production genes, IAA (indole-3-acetic acid) and ACC deaminase (1-aminocyclopropane-1-carboxylate) genes, and slightly altered the abundance of P-related functional genes; (iv) regulated the abundance of microbial quorum sensing system and metal membrane transporter genes, thereby improving the stability and adaptability of the rhizosphere microbial community. This study provides evidence of AMF improving plant growth and resistance to Cd and La stresses by regulating plant rhizosphere microbial communities and aids our understanding of the underlying mechanisms.


Asunto(s)
Metales Pesados , Microbiota , Micorrizas , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Hongos , Metales Pesados/análisis , Micorrizas/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Rizosfera , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Zea mays/metabolismo
12.
Front Microbiol ; 13: 844663, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651488

RESUMEN

Nitrous oxide (N2O) is a powerful greenhouse gas and the predominant stratospheric ozone-depleting substance. Soil is a major source of N2O but remains largely uncertain due to the complicated processes of nitrification and denitrification performed by various groups of microbes such as bacteria, fungi, and archaea. We used incubation experiments to measure the total fungal, archaeal, and bacterial N2O production potential and the microbial functional genes in soils along 3,000 km Chinese grassland transect, including meadow steppe, typical steppe, desert steppe, alpine meadow, and alpine steppe. The results indicated that fungi, archaea, and bacteria contributed 25, 34, and 19% to nitrification and 46, 29, and 15% to denitrification, respectively. The AOA and AOB genes were notably correlated with the total nitrification enzyme activity (TNEA), whereas both narG and nirK genes were significantly correlated with total denitrification enzyme activity (TDEA) at p < 0.01. The correlations between AOA and ANEA (archaeal nitrification enzyme activity), AOB and BNEA (bacterial nitrification enzyme activity), and narG, nirK, and BDEA (bacterial denitrification enzyme activity) showed higher coefficients than those between the functional genes and TNEA/TDEA. The structural equation modeling (SEM) results showed that fungi are dominant in N2O production processes, followed by archaea in the northern Chinese grasslands. Our findings indicate that the microbial functional genes are powerful predictors of the N2O production potential, after distinguishing bacterial, fungal, and archaeal processes. The key variables of N2O production and the nitrogen (N) cycle depend on the dominant microbial functional groups in the N-cycle in soils.

13.
Ecol Evol ; 11(3): 1446-1456, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598143

RESUMEN

Phytolith-occluded carbon (PhytOC) is an important long-term stable carbon fraction in grassland ecosystems and plays a promising role in global carbon sequestration. Determination of the PhytOC traits of different plants in major grassland types is crucial for precisely assessing their phytolith carbon sequestration potential. Precipitation is the predominant factor in controlling net primary productivity (NPP) and species composition of the semiarid steppe grasslands. We selected three representative steppe communities of the desert steppe, the dry typical steppe, and the wet typical steppe in Northern Grasslands of China along a precipitation gradient, to investigate their species composition, biomass production, and PhytOC content for quantifying its long-term carbon sequestration potential. Our results showed that (a) the phytolith and PhytOC contents in plants differed significantly among species, with dominant grass and sedge species having relatively high contents, and the contents are significantly higher in the below- than the aboveground parts. (b) The phytolith contents of plant communities were 16.68, 17.94, and 15.85 g/kg in the above- and 86.44, 58.73, and 76.94 g/kg in the belowground biomass of the desert steppe, the dry typical steppe, and the wet typical steppe, respectively; and the PhytOC contents were 0.68, 0.48, and 0.59 g/kg in the above- and 1.11, 0.72, and 1.02 g/kg in the belowground biomass of the three steppe types. (c) Climatic factors affected phytolith and PhytOC production fluxes of steppe communities mainly through altering plant production, whereas their effects on phytolith and PhytOC contents were relatively small. Our study provides more evidence on the importance of incorporating belowground PhytOC production for estimating phytolith carbon sequestration potential and suggests it crucial to quantify belowground PhytOC production taking into account of plant perenniality and PhytOC deposition over multiple years.

14.
Front Genet ; 12: 705482, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422006

RESUMEN

Astragalus is the largest genus in Leguminosae. Several molecular studies have investigated the potential adulterants of the species within this genus; nonetheless, the evolutionary relationships among these species remain unclear. Herein, we sequenced and annotated the complete chloroplast genomes of three Astragalus species-Astragalus adsurgens, Astragalus mongholicus var. dahuricus, and Astragalus melilotoides using next-generation sequencing technology and plastid genome annotator (PGA) tool. All species belonged to the inverted repeat lacking clade (IRLC) and had similar sequences concerning gene contents and characteristics. Abundant simple sequence repeat (SSR) loci were detected, with single-nucleotide repeats accounting for the highest proportion of SSRs, most of which were A/T homopolymers. Using Astragalus membranaceus var. membranaceus as reference, the divergence was evident in most non-coding regions of the complete chloroplast genomes of these species. Seven genes (atpB, psbD, rpoB, rpoC1, trnV, rrn16, and rrn23) showed high nucleotide variability (Pi), and could be used as DNA barcodes for Astragalus sp. cemA and rpl33 were found undergoing positive selection by the section patterns in the coded protein. Phylogenetic analysis showed that Astragalus is a monophyletic group closely related to the genus Oxytropis within the tribe Galegeae. The newly sequenced chloroplast genomes provide insight into the unresolved evolutionary relationships within Astragalus spp. and are expected to contribute to species identification.

15.
Sci Total Environ ; 718: 137252, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32325613

RESUMEN

The relationships between biodiversity and ecosystem functioning (BEF) have been extensively studied over past decades. However, the environmental factors affecting their relationships, and how their relationships vary under the influence of environmental factors, remain controversial. Studying the BEF relationships in natural/wild environments is of great significance for devising strategies in biodiversity conservation and ecosystem functioning. Using the data from 75 sites on the Mongolian Plateau steppe, we analyzed the relationship between species richness and biomass with general linear models (GLMs) and linear mixed models (LMMs), and analyzed the variation in the species richness-biomass relationships under environmental conditions by the partial least square path modeling (PLSPM). The results showed that de Martonne aridity index affected both species richness and community biomass in parallel, and that hydrothermal coupling conditions were more important direct impact factors for aboveground biomass. However, the significant species richness-biomass relationships became weaker when the effects of environmental factors (i.e. climate and soil properties) were present. Climate humidity was the most important factor in mediating the relationship between species richness and community biomass. Our research suggested that species richness-biomass relationships are weak in the natural grasslands of the Mongolian Plateau, and that this may be due to the differences in the regional-scale environment and changes in species interactions. We recommend that a more comprehensive understanding of the relationship between diversity and biomass requires further research within broader environmental gradients.


Asunto(s)
Biodiversidad , Biomasa , Humedad , Suelo
16.
Plant Sci ; 285: 239-247, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31203889

RESUMEN

Foxtail millet (Setaria italica) is a nutrient-rich food source traditionally grown in arid and semi-arid areas, as it is well adapted to drought climate. Yet there is limited information as how the crop responses to the changing climate. In order to investigate the response of foxtail millet to elevated [CO2] and the underlying mechanism, the crop was grown at ambient [CO2] (400 µmol mol-1) and elevated [CO2] (600 µmol mol-1) in an open-top chamber (OTC) experimental facility in North China. The changes in leaf photosynthesis, chlorophyll fluorescence, biomass, yield and global gene expression in response to elevated [CO2] were determined. Despite foxtail millet being a C4 photosynthetic crop, photosynthetic rates (PN) and intrinsic water-use efficiency (WUEi), were increased under elevated [CO2]. Similarly, grain yield and above-ground biomass also significantly increased (P <  0.05) for the two years of experimentation under elevated [CO2]. Increases in seeds and tiller number, spike and stem weight were the main contributors to the increased grain yield and biomass. Using transcriptomic analyses, this study further identified some genes which play a role in cell wall reinforcement, shoot initiation, stomatal conductance, carbon fixation, glycolysis / gluconeogenesis responsive to elevated [CO2]. Changes in these genes reduced plant height, increased stem diameters, and promote CO2 fixation. Higher photosynthetic rates at elevated [CO2] demonstrated that foxtail millet was not photosynthetically saturated at elevated [CO2] and its photosynthesis response to elevated [CO2] were analogous to C3 plants.


Asunto(s)
Fotosíntesis/efectos de los fármacos , Setaria (Planta)/efectos de los fármacos , Biomasa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Producción de Cultivos , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena en Tiempo Real de la Polimerasa , Setaria (Planta)/genética , Setaria (Planta)/crecimiento & desarrollo , Setaria (Planta)/metabolismo , Transcriptoma/efectos de los fármacos
17.
PeerJ ; 7: e7737, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616585

RESUMEN

Understanding of the dynamic patterns of plant water use in a changing environment is one of foci in plant ecology, and can provide basis for the development of best practice in restoration and protection of ecosystem. We studied the water use sources of three coexisting dominant plant species Leymus chinensis, Stipa grandis and Cleistogenes squarrosa growing in both enclosed and mowing grassland in a typical steppe. The oxygen stable isotope ratios (δ18O) of soil water and stem water of these three species were determined, along with soil moisture, before and after precipitation events. The results showed that (1) mowing had no significant effect on the soil moisture and its δ18O, whereas precipitation significantly changed the soil moisture though no significant effect detected on its δ18O. (2) C. squarrosa took up water majorly from top soil layer due to its shaollow root system; L. chinensis took up relative more water from deep soil layer, and S. grandis took up water from the middle to deep soil layers. (3) L. chinensis and S. grandis in mowing grassland tended to take up more water from the upper soil layers following precipitation events, but showed no sensitive change in water source from soil profile following the precipitation in the enclosed grassland, indicating a more sensitive change of soil water sources for the two species in mowing than enclosed grassland. The differences in root morphology and precipitation distribution may partly explain the differences in their water uptake from different soil layers. Our results have important theoretical values for understanding the water competition among plants in fluctuating environment and under different land use in the typical steppe.

18.
Ecol Evol ; 9(23): 13320-13331, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871647

RESUMEN

The mechanisms of species coexistence within a community have always been the focus in ecological research. Community phylogenetic structure reflects the relationship of historical processes, regional environments, and interactions between species, and studying it is imperative to understand the formation and maintenance mechanisms of community composition and biodiversity. We studied the phylogenetic structure of the shrub communities in arid and semiarid areas of the Mongolian Plateau. First, the phylogenetic signals of four plant traits (height, canopy, leaf length, and leaf width) of shrubs and subshrubs were measured to determine the phylogenetic conservation of these traits. Then, the net relatedness index (NRI) of shrub communities was calculated to characterize their phylogenetic structure. Finally, the relationship between the NRI and current climate and paleoclimate (since the Last Glacial Maximum, LGM) factors was analyzed to understand the formation and maintenance mechanisms of these plant communities. We found that desert shrub communities showed a trend toward phylogenetic overdispersion; that is, limiting similarity was predominant in arid and semiarid areas of the Mongolian Plateau despite the phylogenetic structure and formation mechanisms differing across habitats. The typical desert and sandy shrub communities showed a significant phylogenetic overdispersion, while the steppified desert shrub communities showed a weak phylogenetic clustering. It was found that mean winter temperature (i.e., in the driest quarter) was the major factor limiting steppified desert shrub phylogeny distribution. Both cold and drought (despite having opposite consequences) differentiated the typical desert to steppified desert shrub communities. The increase in temperature since the LGM is conducive to the invasion of shrub plants into steppe grassland, and this process may be intensified by global warming.

19.
Plant Physiol Biochem ; 132: 660-665, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30347376

RESUMEN

Soybean (Glycine max (L.) Merr.) is the world's most important grain legume. The impacts of climate change such as elevated CO2 and drought on soybean physiological and morphological responses are not well understood. This study evaluated the effects of elevated CO2 (ambient concentration + 200 mmol mol-1) and drought stress (35-45% of relative water content) on soybean leaf photosynthesis, chlorophyll fluorescence, stress physiological indexes, morphological parameters, biomass and yield over 2 years at the open-top chamber (OTC) experimental facility in North China. We found that drought decreased intrinsic efficiency of PSII (Fv'/Fm'), effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching coefficient (qP), and yield of soybean, increased nonphotochemical quenching (NPQ), peroxidase (POD), and malondialdehyde (MDA), but had no effect on superoxide dismutase (SOD) or soluble sugar content. Elevated [CO2] increased net photosynthetic rate (PN), water-use efficiency (WUE), ΦPSII, qP, SOD, soluble sugar content and yield of soybean. Elevated [CO2] enhanced the positive effects of drought on WUE, but reduced the negative effects of drought on ΦPSII and qP. Elevated [CO2] enhanced the resistance to drought by improving the capacity of photosynthesis and WUE in soybean leaves.


Asunto(s)
Dióxido de Carbono/farmacología , Sequías , Glycine max/fisiología , Agua/metabolismo , Biomasa , Clorofila/metabolismo , Fluorescencia , Gases/metabolismo , Malondialdehído/metabolismo , Peroxidasa/metabolismo , Solubilidad , Glycine max/anatomía & histología , Glycine max/efectos de los fármacos , Superóxido Dismutasa/metabolismo
20.
Ying Yong Sheng Tai Xue Bao ; 28(6): 1869-1878, 2017 Jun 18.
Artículo en Zh | MEDLINE | ID: mdl-29745149

RESUMEN

The dynamic features of the ecosystem components under different human activities are fundamental for understanding the ecosystem change mechanisms and developing sustainable mana-gement system. For the vast temperate steppe ecosystems in northern China, there existed many studies on the effects of animal grazing and mowing on plant and soil microbial communities, but not the soil fauna communities. We investigated the soil macrofauna communities of a typical Inner Mongolia steppe grassland under 6 utilization treatments (1 full season grazing, 3 different seasonal grazing, 1 autumn mowing and 1 control of no grazing or mowing). The investigation was conducted in spring, summer and autumn after 3-year's grazing or mowing treatments. We collected 597 soil animals, which belonged to 2 phyla, 4 orders, 11 classes, and 49 groups. The individual density, biomass and diversity indices of soil macrofauna community significantly decreased under the full season grazing, whereas the effects of mowing on soil macrofauna were relatively mild, with the individual density, biomass and diversity indices of soil macrofauna community even showing an increasing trend. The seasonal grazing in summer and autumn had the least negative effects on the individual density, biomass and diversity indices of soil macrofauna community among three seasonal grazing treatments. The results suggested that mowing might facilitate the restoration of soil macrofauna community for degraded steppe grassland, and the seasonal grazing in summer and autumn had the least negative effects on soil macrofauna communities, which was possibly the best grazing practice for a sustainable grassland use.


Asunto(s)
Ecosistema , Microbiología del Suelo , Suelo , Animales , Biomasa , China , Pradera , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA