Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ecotoxicol Environ Saf ; 282: 116655, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968871

RESUMEN

Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.10 Gy) disturb the serum Mg2+ level and Notch1 signal in the mouse femur tissues, the effects of LDR on osteogenesis and the underlying molecular mechanisms were investigated based on an in vitro culture system for bone marrow stromal cells (BMSCs). Our data showed that cumulative LDR suppressed the osteogenic potential in BMSCs as a result of upregulation of Notch1 signaling. Further analyses indicated that the upregulation of NICD1 (Notch1 intracellular domain), the key intracellular domain for Notch1 signaling, under LDR was a consequence of enhanced protein stabilization caused by SUMOylation (small ubiquitin-like modification). Specifically, the downregulation of SENP1 (sentrin/SUMO-specific protease 1) expression induced by LDR enhanced the SUMOylation of NICD1, causing the accumulation of Notch1 signaling, which eventually inhibited the osteogenic potential of BMSCs. In conclusion, this work expounded on the mechanisms underlying the impacts of LDR on bone metabolism and shed light on the research on bone regeneration under radiation.

2.
Molecules ; 27(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234950

RESUMEN

This study aimed to evaluate the pharmacokinetics of acipimox in rats under simulated high altitude hypoxia conditions. A sensitive and reliable LC-MS/MS method has been established for the quantitation of acipimox in rat plasma and tissue homogenate and validated according to the guidelines of the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA). Western blotting and enzyme linked immunosorbent assay (ELISA) were used to investigate the expression of lipid metabolism-related proteins and free fatty acid (FFA) levels, respectively. Cell viability was detected using a Cell Counting kit-8 assay (CCK-8). The method was then successfully applied in a pharmacokinetic comparison between normoxic and hypoxic rats. The results indicated that there were significant differences in the main pharmacokinetics parameters of acipimox between normoxic and hypoxic rats. HCAR2 expression in the hypoxia group was upregulated compared to that in the normoxia group and the levels of FFA decreased more in the hypoxia group. Under the hypoxia condition, the proliferation of HK2 cells was inhibited with increasing concentrations of acipimox. The results provide important and valuable information for the safety and efficacy of acipimox, which indicated that the dosage of acipimox might be adjusted appropriately during clinical medication in hypoxia.


Asunto(s)
Ácidos Grasos no Esterificados , Animales , Cromatografía Liquida , Ácidos Grasos no Esterificados/metabolismo , Hipolipemiantes/farmacología , Hipoxia/tratamiento farmacológico , Pirazinas , Ratas , Espectrometría de Masas en Tándem
3.
ChemSusChem ; : e202301807, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847187

RESUMEN

Sn and C nanocomposites are ideal anode materials for high-energy and high-power density lithium ion batteries. However, their facile and controllable synthesis for practical applications is still a critical challenge. In this work, a facile one-step method is developed to controllably synthesize ultrafine Sn nanocrystals (< 5 nm) loaded on carbon black (Sn@C) through Na reducing SnCl4 by mechanical milling. Different from traditional up-down mechanical milling method, this method utilizes mechanical milling to trigger bottom-up reduction reaction of SnCl4. The in-situ formed Sn nanocrystals directly grow on carbon black, which results in the homogeneous composite and the size control of Sn nanocrystals. The obtained Sn@C electrode is revealed to possesses large lithium diffusion coefficient, low lithiation energy barrier and stable electrochemical property during cycle, thus showing excellent lithium storage performance with a high reversible capacity (942 mAh g-1 at a current density of 100 mA g-1), distinguished rate ability (480 mAh g-1 at 8000 mA g-1) and superb cycling performance (730 mAh g-1 at 1000 mA g-1 even after 1000 cycles).

4.
Cell Death Dis ; 15(6): 392, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834617

RESUMEN

Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Fructosa-Bifosfatasa , Histonas , Queratinocitos , Psoriasis , Animales , Humanos , Ratones , Acetilcoenzima A/metabolismo , Acetilación , Modelos Animales de Enfermedad , Fructosa-Bifosfatasa/metabolismo , Fructosa-Bifosfatasa/genética , Glucólisis , Histonas/metabolismo , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones Endogámicos C57BL , Psoriasis/patología , Psoriasis/metabolismo , Psoriasis/genética
5.
Free Radic Biol Med ; 222: 288-303, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830513

RESUMEN

Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor ß (CBFß) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.

6.
J Pharm Anal ; 13(1): 11-23, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36313960

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storms constitute the primary cause of coronavirus disease 19 (COVID-19) progression, severity, criticality, and death. Glucocorticoid and anti-cytokine therapies are frequently administered to treat COVID-19, but have limited clinical efficacy in severe and critical cases. Nevertheless, the weaknesses of these treatment modalities have prompted the development of anti-inflammatory therapy against this infection. We found that the broad-spectrum anti-inflammatory agent inosine downregulated proinflammatory interleukin (IL)-6, upregulated anti-inflammatory IL-10, and ameliorated acute inflammatory lung injury caused by multiple infectious agents. Inosine significantly improved survival in mice infected with SARS-CoV-2. It indirectly impeded TANK-binding kinase 1 (TBK1) phosphorylation by binding stimulator of interferon genes (STING) and glycogen synthase kinase-3ß (GSK3ß), inhibited the activation and nuclear translocation of the downstream transcription factors interferon regulatory factor (IRF3) and nuclear factor kappa B (NF-κB), and downregulated IL-6 in the sera and lung tissues of mice infected with lipopolysaccharide (LPS), H1N1, or SARS-CoV-2. Thus, inosine administration is feasible for clinical anti-inflammatory therapy against severe and critical COVID-19. Moreover, targeting TBK1 is a promising strategy for inhibiting cytokine storms and mitigating acute inflammatory lung injury induced by SARS-CoV-2 and other infectious agents.

7.
Biomed Pharmacother ; 166: 115322, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586115

RESUMEN

Fructus psoraleae (FP) is a commonly used herb with potential reproductive toxicity. Bavachin (BV), one of essential active ingredients of FP, was found to exhibit estrogenic activity, but its effect on female reproductive system remains unknown. In this study, the impact of BV on the female zebrafish reproductive system and underlying molecular mechanism were determined in vivo and ex vivo. The results showed that BV could accumulate in zebrafish ovary, leading to obvious follicular atresia and increase in gonadal index and vitellogenin content. Endoplasmic reticulum (ER) swelling and hypertrophy were observed in the BV-treated zebrafish ovary, accompanied by an increase in the expressions of ER stress and unfolded protein response (UPR) related genes, namely atf6, ire-1α and xbp1s. In the ex vivo study, BV was found to decrease the survival rate and maturation rate of oocytes, while increasing the expression of Ca2+. Additionally, BV led to an elevation in the level of estrogen receptor ESR1 and the expressions of genes involved in ER stress and UPR, including atf6, ire-1α, xbp1s, chop and perk. Moreover, molecular docking revealed that BV could directly bind to immunoglobulin heavy chain binding protein (BiP) and estrogen receptor 1 (ESR1). Besides, the alterations induced by BV could be partially reversed by fulvestrant (FULV) and 4-phenylbutyric acid (4-PBA), respectively. Thus, long-termed BV-containing medicine treatment could generate reproductive toxicity in female zebrafish by causing follicular atresia through BiP- and ESR-mediated ER stress and UPR, providing a potential target for the prevention of reproductive toxicity caused by BV.


Asunto(s)
Ovario , Pez Cebra , Femenino , Animales , Atresia Folicular , Simulación del Acoplamiento Molecular , Transducción de Señal , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Apoptosis
8.
Pharmaceutics ; 15(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36678677

RESUMEN

Celastrol, an active triterpenoid extracted from one of the most famous traditional Chinese medicines (TCMs), Tripterygium wilfordii Hook.f., is a novel anti-cancer drug with significant anti-angiogenesis activity. However, the exact molecular mechanisms underlying its anti-tumor angiogenesis effect remain unclear. The process of angiogenesis needs lots of energy supply, which mostly derives from mitochondria, the "energy factory" in our body. This study shows that celastrol exerts visible suppression on tumor growth and angiogenesis in a cell-derived xenograft (CDX). Likewise, it reduced the tube formation and migration of human umbilical vein endothelial cells (HUVECs), suppressed the energy metabolism of mitochondria in the Seahorse XF Mito Stress Test, and triggered mitochondrial fragmentation and NF-κB activation. Mechanically, celastrol downregulated the expression of mitochondrial-sharping protein optic atrophy protein 1 (OPA1), which was further estimated by the OPA1 knockdown model of HUVECs. Specifically, celastrol directly suppressed OPA1 at the mRNA level by inhibiting the phosphorylation of STAT3, and stattic (STAT3 inhibitor) showed the same effects on OPA1 suppression and anti-angiogenesis activity. Overall, this study indicates that celastrol inhibits tumor angiogenesis by suppressing mitochondrial function and morphology via the STAT3/OPA1/P65 pathway and provides new insight for mitochondrion-targeted cancer therapy.

9.
Front Pharmacol ; 13: 872474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873571

RESUMEN

The nephrotoxicity of Fructus Psoraleae, an effective traditional Chinese medicine for vitiligo treatment, has been reported. As one of the main toxic components in Fructus Psoraleae, bavachin (BV) was considered to be related to Fructus Psoraleae-caused adverse outcomes, but the direct evidence and molecular mechanism underlying BV-induced nephrotoxicity are not well elucidated. Therefore, this study was designed to confirm whether BV would cause toxic effects on the kidney and explore the possible mode of action. Our results demonstrated that days' treatment with 0.5 µM BV indeed caused obvious renal fibrosis in the zebrafish kidney. The obvious E- to N-cadherin switch and the expressions of proteins promoting epithelial-mesenchymal transition (EMT) were observed in BV-treated human renal tubular epithelial and zebrafish kidneys. In addition, elevated reactive oxygen species (ROS) levels and Bip/eIF2α/CHOP-mediated endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were caused by BV, both of which could be reversed by ROS scavenger N-acetyl-L-cysteine (NAC). Also, blocking ER stress-caused cytoplasmic Ca2+ overload with 4-PBA notably alleviated BV-induced alterations in key molecular events related to EMT and renal fibrosis. Furthermore, of the natural compounds subjected to screening, ginsenoside Rb1 significantly downregulated BV-induced ER stress by inhibiting ROS generation and following the activation of Bip/eIF2α/CHOP signaling in HK2 cells. Subsequently, BV-triggered EMT and renal fibrosis were both ameliorated by ginsenoside Rb1. In summary, our findings suggested that BV-induced ROS promoted the appearance of EMT and renal fibrosis mainly via Bip/eIF2α/CHOP-mediated ER stress. This ER stress-related toxic pathway might be a potential intervention target for BV-caused renal fibrosis, and ginsenoside Rb1 would be a promising drug against BV- or Fructus Psoraleae-induced nephrotoxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA