Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Environ Res ; 239(Pt 1): 117295, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37813139

RESUMEN

Given the ubiquitous detection of antibiotics and antibiotic resistance genes (ARGs) in waterbodies worldwide and increasing public attention to water resource safety, this study investigated the presence of antibiotics and ARGs in the water sources of the Wuhan stretch of the Yangtze River (YR) as well as potential ecological risks. In this study, 15 antibiotics and 10 ARGs in a source of drinking water were analyzed using solid-phase extraction-ultra performance liquid chromatography-mass spectrometry technology (SPE-UPLC-MS/MS) and real-time fluorescence quantitative polymerase chain reaction (qPCR). Fourteen antibiotics were detected in the samples from 18 water sources, with the highest concentration detected for tetracycline, reaching up to 1708.33 ng/L. The detection rates of norfloxacin, enrofloxacin, ofloxacin, tetracycline, and roxithromycin were 100%. The concentrations of antibiotics were highest in She Shui, followed by the Wuhan stretch of the lower reaches of the YR, whereas the lowest concentrations were found in the Wuhan stretch of the upper reaches of the YR which were approximately equal to those in the Han River (HR). Ofloxacin and roxithromycin presented a substantial threat to aquatic organisms with high sensitivity at the majority of the sampling sites. The overall abundance of ARGs was notably greater in the lower reaches of the YR compared with the upper reaches and the HR. The highest absolute abundance was observed for sulfa ARGs. Integron intl1 strongly correlated with sul1, sul2, ermB, and qnrS, and antibiotics, strongly correlated with multiple ARGs, suggesting that antibiotics and ARGs are present in water sources in Wuhan and may present a plausible hazard to both human and ecological well-being. Hence, regulating the spread and dissemination of antibiotics and ARGs in the environment is imperative. The findings of this research offer significant insights into the stewardship and safeguarding of aquatic reserves in the Wuhan stretch of the YR.


Asunto(s)
Antibacterianos , Roxitromicina , Humanos , Agua , China , Cromatografía Liquida , Ríos , Etnicidad , Espectrometría de Masas en Tándem , Ofloxacino , Tetraciclina , Farmacorresistencia Microbiana/genética
2.
Ecotoxicol Environ Saf ; 237: 113533, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35453025

RESUMEN

Cadmium (Cd) is a dispensable element that can be absorbed by crops, posing a threat to human health through the food chains. Melatonin (MT), as a plant growth regulator, has been used to alleviate Cd toxicity in many plant species; however, the underlying molecular mechanisms responsible for Cd toxicity in wheat are still poorly understood. In this study, the suitable exogenous MT concentration (50 µM) was screened to mitigate Cd toxicity of wheat plants by increasing the plant height, root length, fresh or dry weight and chlorophyll content, or decreasing the malondialdehyde (MDA) content. In addition, MT application significantly increased ascorbic acid (ASA) and glutathione (GSH) content by reducing ROS production, especially in roots, further decreasing Cd content in fraction of organelles. Moreover, the expression levels of ASA-GSH synthesis genes, APX, GR, and GST were significantly increased by 171.5%, 465.2%, and 256.8% in roots, respectively, whereas GSH, DHAR, or MDHAR were significantly decreased by 48.5%, 54.3%, or 60.0% in roots under MT + Cd stress. However, the expression levels of Cd-induced metal transporter genes TaNramp1, TaNramp5, TaHMA2, TaHMA3, and TaLCT1 were significantly decreased by 53.7%, 50.1%, 86.5%, 87.2%, and 94.5% in roots under MT + Cd stress compared with alone Cd treatment, respectively. In conclusion, our results suggesting that MT alleviate Cd toxicity in wheat by enhancing ASA-GSH metabolism, suppressing Cd transporter gene expression, and regulating Cd uptake and translocation in wheat plants.


Asunto(s)
Ácido Ascórbico , Melatonina , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Cadmio/metabolismo , Cadmio/toxicidad , Glutatión/metabolismo , Humanos , Melatonina/metabolismo , Melatonina/farmacología , Estrés Oxidativo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Triticum/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498828

RESUMEN

FK506-binding protein (FKBP) genes have been found to play vital roles in plant development and abiotic stress responses. However, limited information is available about this gene family in wheat (Triticum aestivum L.). In this study, a total of 64 FKBP genes were identified in wheat via a genome-wide analysis involving a homologous search of the latest wheat genome data, which was unevenly distributed in 21 chromosomes, encoded 152 to 649 amino acids with molecular weights ranging from 16 kDa to 72 kDa, and was localized in the chloroplast, cytoplasm, nucleus, mitochondria, peroxisome and endoplasmic reticulum. Based on sequence alignment and phylogenetic analysis, 64 TaFKBPs were divided into four different groups or subfamilies, providing evidence of an evolutionary relationship with Aegilops tauschii, Brachypodium distachyon, Triticum dicoccoides, Arabidopsis thaliana and Oryza sativa. Hormone-related, abiotic stress-related and development-related cis-elements were preferentially presented in promoters of TaFKBPs. The expression levels of TaFKBP genes were investigated using transcriptome data from the WheatExp database, which exhibited tissue-specific expression patterns. Moreover, TaFKBPs responded to drought and heat stress, and nine of them were randomly selected for validation by qRT-PCR. Yeast cells expressing TaFKBP19-2B-2 or TaFKBP18-6B showed increased influence on drought stress, indicating their negative roles in drought tolerance. Collectively, our results provide valuable information about the FKBP gene family in wheat and contribute to further characterization of FKBPs during plant development and abiotic stress responses, especially in drought stress.


Asunto(s)
Arabidopsis , Triticum , Triticum/metabolismo , Genoma de Planta , Filogenia , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Arabidopsis/genética , Familia de Multigenes
4.
New Phytol ; 231(5): 1968-1983, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34096624

RESUMEN

Efficient phosphate (Pi) uptake and utilisation are essential for promoting crop yield. However, the underlying molecular mechanism is still poorly understood in complex crop species such as hexaploid wheat. Here we report that TaPHT1;9-4B and its transcriptional regulator TaMYB4-7D function in Pi acquisition, translocation and plant growth in bread wheat. TaPHT1;9-4B, a high-affinity Pi transporter highly upregulated in roots by Pi deficiency, was identified using quantitative proteomics. Disruption of TaPHT1;9-4B function by BSMV-VIGS or CRISPR editing impaired wheat tolerance to Pi deprivation, whereas transgenic expression of TaPHT1;9-4B in rice improved Pi uptake and plant growth. Using yeast-one-hybrid assay, we isolated TaMYB4-7D, a R2R3 MYB transcription factor that could activate TaPHT1;9-4B expression by binding to its promoter. Silencing TaMYB4-7D decreased TaPHT1;9-4B expression, Pi uptake and plant growth. Four promoter haplotypes were identified for TaPHT1;9-4B, with Hap3 showing significant positive associations with TaPHT1;9-4B transcript level, growth performance and phosphorus (P) content in wheat plants. A functional marker was therefore developed for tagging Hap3. Collectively, our data shed new light on the molecular mechanism controlling Pi acquisition and utilisation in bread wheat. TaPHT1;9-4B and TaMYB4-7D may aid further research towards the development of P efficient crop cultivars.


Asunto(s)
Pan , Triticum , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
5.
J Pineal Res ; 70(4): e12727, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33666955

RESUMEN

Melatonin (MT) is involved in various physiological processes and stress responses in animals and plants. However, little is known about the molecular mechanisms by which MT regulates potassium deficiency (DK) tolerance in crops. In this study, an appropriate concentration (50 µmol/L) was found to enhance the tolerance of wheat plants against DK. RNA-seq analysis showed that a total of 6253 and 5873 differentially expressed genes (DEGs) were separately identified in root and leaf tissues of the DK + MT-treated wheat plants. They functionally involved biological processes of secondary metabolite, signal transduction, and transport or catabolism. Of these, an upregulated high-affinity K transporter 1 (TaHAK1) gene was next characterized. TaHAK1 overexpression markedly enhanced the K absorption, while its transient silencing exhibited the opposite effect, suggesting its important role in MT-mediated DK tolerance. Moreover, yeast one-hybrid (Y1H) was used to screen the upstream regulators of TaHAK1 gene and the transcription factor TaNAC71 was identified. The binding between TaNAC71 and TaHAK1 promoter was evidenced by using Y1H, LUC, and EMSA assays. Transient overexpression of TaNAC71 in wheat protoplasts activated the TaHAK1 expression, whereas its transient silencing inhibited the TaHAK1 expression and aggravated the sensitivity to DK. Exogenous MT application greatly upregulated the expression of TaHAK1 in both transient overexpression and silencing systems. Our findings revealed some molecular mechanisms underlying MT-mediated DK tolerance and helped broaden its practical application in agriculture.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Melatonina/metabolismo , Proteínas de Plantas/metabolismo , Deficiencia de Potasio/metabolismo , Triticum/metabolismo , Adaptación Fisiológica/fisiología , Productos Agrícolas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Ecotoxicol Environ Saf ; 221: 112469, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34198190

RESUMEN

Glutathione S-transferase (GST) is the key enzyme in glutathione (GSH) synthesis, and plays a crucial role in copper (Cu) detoxification. Nonetheless, its regulatory mechanisms remain largely unclear. In this study, we identified a Cu-induced glutathione S-transferase 1 (TaGST1) gene in wheat. Yeast one-hybrid (Y1H) screened out TaWRKY74, which was one member from the WRKY transcription factor family. The bindings between TaGST1 promoter and TaWRKY74 were further verified by using another Y1H and luciferase assays. Expression of TaWRKY74 was induced more than 30-folds by Cu stress. Functions of TaWRKY74 were tested by using transiently silence methods. In transiently TaWRKY74-silenced wheat plants, TaWRKY74 and TaGST1 expression, GST activity, and GSH content was significantly inhibited by 25.68%, 19.88%, 27.66%, and 12.68% in shoots, and 53.81%, 52.11%, 23.47%, and 17.11% in roots, respectively. However, contents of hydrogen peroxide, malondialdehyde, or Cu were significantly increased by 2.58%, 12.45%, or 37.74% in shoots, and 25.24%, 53.84%, and 103.99% in roots, respectively. Notably, exogenous application of GSH reversed the adverse effects of transiently TaWRKY74-silenced wheat plants during Cu stress. Taken together, our results suggesting that TaWRKY74 regulated TaGST1 expression and affected GSH accumulation under Cu stress, and could be useful to ameliorate Cu toxicity for crop food safety.


Asunto(s)
Cobre/toxicidad , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Triticum/efectos de los fármacos , Factores de Transcripción/genética , Triticum/genética , Triticum/metabolismo , Técnicas del Sistema de Dos Híbridos , Levaduras/genética
7.
Bull Environ Contam Toxicol ; 107(2): 320-326, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34110442

RESUMEN

Cadmium (Cd), a toxic heavy metal, is harmful to plants and human health. Glutathione (GSH) could alleviate Cd toxicity of plant species, whereas its mechanism responsible for wheat remains poorly understood. Here, we found that exogenous GSH application significantly increased the fresh and dry weight, root elongation, chlorophyll contents, while decreased the contents of malondialdehyde (MDA) and GSH, and translocation factor of Cd compared with Cd treatment. Moreover, GSH application significantly increased activities of antioxidant enzymes and expression of related genes, which involved in GSH synthesis, especially in roots. In addition, we found that GSH application suppressed Cd-induced expression of metal transporter genes TaNramp1, TaNramp5, TaHMA2, TaHMA3, TaLCT1 and TaIRT2 in roots. Taken together, our results suggested that GSH could alleviate Cd toxicity in wheat by increasing GSH synthesis gene expression or suppressing Cd transporter genes expression, and further affecting Cd uptake and translocation in wheat plants.


Asunto(s)
Cadmio , Triticum , Antioxidantes , Cadmio/toxicidad , Clorofila , Glutatión , Humanos , Raíces de Plantas
8.
BMC Genomics ; 21(1): 577, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831009

RESUMEN

BACKGROUND: Drought is one of the most adverse environmental factors limiting crop productions and it is important to identify key genetic determinants for food safety. Calcium-dependent protein kinases (CPKs) are known to be involved in plant growth, development, and environmental stresses. However, biological functions and regulatory mechanisms of many plant CPKs have not been explored. In our previous study, abundance of the wheat CPK34 (TaCPK34) protein was remarkably upregulated in wheat plants suffering from drought stress, inferring that it could be involved in this stress. Therefore, here we further detected its function and mechanism in response to drought stress. RESULTS: Transcripts of the TaCPK34 gene were significantly induced after PEG-stimulated water deficiency (20% PEG6000) or 100 µM abscisic acid (ABA) treatments. The TaCPK34 gene was transiently silenced in wheat genome by using barley stripe mosaic virus-induced silencing (BSMV-VIGS) method. After 14 days of drought stress, the transiently TaCPK34-silenced wheat seedlings showed more sensitivity compared with control, and the plant biomasses and relative water contents significantly decreased, whereas soluble sugar and MDA contents increased. The iTRAQ-based quantitative proteomics was employed to measure the protein expression profiles in leaves of the transiently TaCPK34-silenced wheat plants after drought stress. There were 6103 proteins identified, of these, 51 proteins exhibited significantly altered abundance, they were involved in diverse function. And sequence analysis on the promoters of genes, which encoded the above identified proteins, indicated that some promoters harbored some ABA-responsive elements. We determined the interactions between TaCPK34 and three identified proteins by using bimolecular fluorescent complementation (BiFC) method and our data indicated that TaCPK34directly interacted with the glutathione S-transferase 1 and prx113, respectively. CONCLUSIONS: Our study suggested that the TaCPK34 gene played positive roles in wheat response to drought stress through directly or indirectly regulating the expression of ABA-dependent manner genes, which were encoding identified proteins from iTRAQ-based quantitative proteomics. And it could be used as one potential gene to develop crop cultivars with improved drought tolerance.


Asunto(s)
Sequías , Triticum , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Triticum/genética , Triticum/metabolismo
9.
Mol Cell Proteomics ; 16(11): 1889-1905, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28821602

RESUMEN

Potassium (K+) is the most abundant inorganic cation in plants, and molecular dissection of K+ deficiency has received considerable interest in order to minimize K+ fertilizer input and develop high quality K+-efficient crops. However, the molecular mechanism of plant responses to K+ deficiency is still poorly understood. In this study, 2-week-old bread wheat seedlings grown hydroponically in Hoagland solution were transferred to K+-free conditions for 8 d, and their root and leaf proteome profiles were assessed using the iTRAQ proteome method. Over 4000 unique proteins were identified, and 818 K+-responsive protein species showed significant differences in abundance. The differentially expressed protein species were associated with diverse functions and exhibited organ-specific differences. Most of the differentially expressed protein species related to hormone synthesis were involved in jasmonic acid (JA) synthesis and the upregulated abundance of JA synthesis-related enzymes could result in the increased JA concentrations. Abundance of allene oxide synthase (AOS), one key JA synthesis-related enzyme, was significantly increased in K+-deficient wheat seedlings, and its overexpression markedly increased concentrations of K+ and JA, altered the transcription levels of some genes encoding K+-responsive protein species, as well as enhanced the tolerance of rice plants to low K+ or K+ deficiency. Moreover, rice AOS mutant (osaos) exhibited more sensitivity to low K+ or K+ deficiency. Our findings could highlight the importance of JA in K+ deficiency, and imply a network of molecular processes underlying plant responses to K+ deficiency.


Asunto(s)
Ciclopentanos/metabolismo , Oryza/genética , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Potasio/metabolismo , Proteómica/métodos , Triticum/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Especificidad de Órganos , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantones/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Triticum/metabolismo
10.
Biol Res ; 52(1): 56, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699158

RESUMEN

BACKGROUND: ADP-glucose pyrophosphorylase (AGPase), the key enzyme in plant starch biosynthesis, is a heterotetramer composed of two identical large subunits and two identical small subunits. AGPase has plastidial and cytosolic isoforms in higher plants, whereas it is mainly detected in the cytosol of grain endosperms in cereal crops. Our previous results have shown that the expression of the TaAGPL1 gene, encoding the cytosolic large subunit of wheat AGPase, temporally coincides with the rate of starch accumulation and that its overexpression dramatically increases wheat AGPase activity and the rate of starch accumulation, suggesting an important role. METHODS: In this study, we performed yeast one-hybrid screening using the promoter of the TaAGPL1 gene as bait and a wheat grain cDNA library as prey to screen out the upstream regulators of TaAGPL1 gene. And the barley stripe mosaic virus-induced gene-silencing (BSMV-VIGS) method was used to verify the functional characterization of the identified regulators in starch biosynthesis. RESULTS: Disulfide isomerase 1-2 protein (TaPDIL1-2) was screened out, and its binding to the TaAGPL1-1D promoter was further verified using another yeast one-hybrid screen. Transiently silenced wheat plants of the TaPDIL1-2 gene were obtained by using BSMV-VIGS method under field conditions. In grains of BSMV-VIGS-TaPDIL1-2-silenced wheat plants, the TaAGPL1 gene transcription levels, grain starch contents, and 1000-kernel weight also significantly increased. CONCLUSIONS: As important chaperones involved in oxidative protein folding, PDIL proteins have been reported to form hetero-dimers with some transcription factors, and thus, our results suggested that TaPDIL1-2 protein could indirectly and negatively regulate the expression of the TaAGPL1 gene and function in starch biosynthesis.


Asunto(s)
Pan , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Proteínas de Plantas/genética , Factores de Transcripción , Triticum/genética
11.
Int J Mol Sci ; 19(5)2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29762476

RESUMEN

The APETALA2/ethylene response factor (AP2/ERF) superfamily is involved in the responses of plants to biotic and abiotic stresses; however, the functions and mechanisms of some members of this family in plants are unclear. In our previous study, expression of TaERFL1a, a member of the AP2/ERF family, was remarkably induced in wheat seedlings suffering freezing stress. In this study, we show that its expression was rapidly upregulated in response to salt, cold, and water deficiency, suggesting roles in the responses to abiotic stresses. Further, transient barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) resulted in significantly reduced tolerance to 20% PEG6000-stimulated water deficiency. Subcellular localization and transcriptional activation assays separately showed that TaERFL1a was targeted to the nucleus and possessed transcriptional activation activity. Yeast two-hybrid library screening identified six interacting proteins, and of these, the interactions between TaERFL1a and TaSGT1, and TaERFL1a and TaDAD2 proteins were further confirmed by yeast co-transformation and bimolecular fluorescent complementation (BiFC). Collectively, our results suggest that TaERFL1a is a stress-responsive transcription factor, which could be functionally related to proteins involved in the abiotic stress responses of plants.


Asunto(s)
Sequías , Proteínas de Plantas/genética , Estrés Fisiológico , Factores de Transcripción/genética , Triticum/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Factores de Transcripción/metabolismo , Triticum/metabolismo
12.
Molecules ; 22(3)2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28257051

RESUMEN

ADP-glucose pyrophosphorylase (AGPase), the key enzyme in starch synthesis, consists of two small subunits and two large subunits with cytosolic and plastidial isoforms. In our previous study, a cDNA sequence encoding the plastidial small subunit (TaAGPS1b) of AGPase in grains of bread wheat (Triticum aestivum L.) was isolated and the protein subunit encoded by this gene was characterized as a truncated transit peptide (about 50% shorter than those of other plant AGPS1bs). In the present study, TaAGPS1b was fused with green fluorescent protein (GFP) in rice protoplast cells, and confocal fluorescence microscopy observations revealed that like other AGPS1b containing the normal transit peptide, TaAGPS1b-GFP was localized in chloroplasts. TaAGPS1b was further overexpressed in a Chinese bread wheat cultivar, and the transgenic wheat lines exhibited a significant increase in endosperm AGPase activities, starch contents, and grain weights. These suggested that TaAGPS1b subunit was targeted into plastids by its truncated transit peptide and it could play an important role in starch synthesis in bread wheat grains.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Péptidos/metabolismo , Plastidios/metabolismo , Subunidades de Proteína/metabolismo , Triticum/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/química , Subunidades de Proteína/química , Transporte de Proteínas , Proteolisis , Proteínas Recombinantes de Fusión
13.
J Proteome Res ; 14(1): 249-67, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25330896

RESUMEN

Wheat seedlings exposed to 100 µM HgCl2 for 3 days exhibited high-level mercury (Hg) accumulation, which led to inhibited growth, increased lipid peroxidation, and disrupted cellular ultrastructures. And root growth and ultrastructural changes of wheat seedlings were inhibited more severely than those of leaves. To identify the wheat protein response to Hg stress, the iTRAQ method was used to determine the proteome profiles of the roots and leaves of wheat seedlings exposed to high-Hg conditions. 249 proteins were identified with significantly altered abundance. 117 were found in roots and 132 in leaves. These proteins were classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, energy production, and transport functional groups. The majority of proteins identified in Hg-stressed roots and leaves displayed differently altered abundance, revealing organ-specific differences in adaption to Hg stress. Pathway Studio software was used to identify the Hg-responsive protein interaction network that included 49 putative key proteins, and they were potentially regulated by abscisic acid (ABA). Exogenous ABA application conferred protection against Hg stress and increased activities of peroxidase enzyme, suggesting that it may be an important factor in the Hg signaling pathway. These findings can provide useful insights into the molecular mechanisms of Hg responses in higher plants.


Asunto(s)
Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mercurio/farmacocinética , Proteínas de Plantas/metabolismo , Plantones/metabolismo , Estrés Fisiológico/efectos de los fármacos , Triticum/metabolismo , Análisis de Varianza , Cromatografía por Intercambio Iónico , Cromatografía Liquida , Peroxidación de Lípido/efectos de los fármacos , Mercurio/toxicidad , Microscopía Electrónica de Transmisión , Raíces de Plantas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Espectrometría de Masas en Tándem , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo
14.
Toxics ; 12(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39058158

RESUMEN

In contemporary society, the improper use of antibiotics leads to their persistent presence in the ecological environment. Due to the diverse physical and chemical properties of antibiotics, their spatial and temporal distribution in the environment varies. Moreover, antibiotics can stimulate the emergence of antibiotic resistance genes (ARGs), which complicates the monitoring and regulation of antibiotics and poses a significant threat to both aquatic and terrestrial environments. This study investigated the distribution of 15 antibiotics and 11 typical ARGs across four categories at 19 sites of drinking water sources in Wuhan, China. The findings revealed that the concentration of antibiotics during the dry season (nd~61,883 ng/L) was significantly higher compared to both the normal water season (nd~49,883 ng/L) and the wet season (nd~28,686 ng/L). Sulfamethoxazole (SMX), sulfamethoxazole (SMD), sulfadiazine (SD), and roxithromycin (RTM) were the predominant antibiotics in the target water environments. The study indicated that most of the antibiotics analyzed posed little to no risk to aquatic organisms. The primary ARGs detected in the surface water of the study area were sul1, qnrD, and tetO. Furthermore, some ARGs showed a negative correlation with their respective antibiotics. Additional research is necessary to evaluate the impact of these emerging pollutants (antibiotics and ARGs) on the safety of high-quality drinking water for residents in Wuhan City.

15.
Huan Jing Ke Xue ; 45(2): 1128-1140, 2024 Feb 08.
Artículo en Zh | MEDLINE | ID: mdl-38471950

RESUMEN

To explore the effects of different concentrations of zinc (Zn) on the growth and root architecture classification of maize seedlings under cadmium (Cd) stress, a hydroponic experiment was conducted to study the effects of different concentrations of Zn (0, 10, 25, 50, 100, 200, and 400 µmol·L-1) on the growth, root architecture and classification characteristics, Cd content, root Cd uptake capacity, and photosynthetic system of maize seedlings under Cd stress (50 µmol·L-1) by using Zhengdan 958 as the experimental material. Principal component analysis and the membership function method were used for comprehensive evaluation. The results showed that the 50 µmol·L-1 Cd stress had a significant toxic effect on maize seedlings, which significantly reduced chlorophyll content and photosynthetic parameters. The main root length, plant height, biomass, root forks, and root tips, including the root length and root surface area of the grade Ⅰ-Ⅲ diameter range and the root volume of the grade Ⅰ-Ⅱ diameter range, decreased significantly, which hindered the normal growth and development of maize seedlings. Compared with that under no Zn application, 100 µmol·L-1 and 200 µmol·L-1 Zn application reduced the uptake of Cd by maize seedlings, significantly reduced the Cd content in shoots and roots and the Cd uptake efficiency. The toxic effect on maize seedlings was alleviated, and the fresh weight, dry weight, tolerance index, and root forks of shoots and roots were significantly increased. The photosynthesis of maize seedlings was significantly enhanced, and the photosynthetic rate and the total chlorophyll content was significantly increased. The RL, SA, and RV in the Ⅰ-Ⅱ diameter range reached the maximum at 100 µmol·L-1 Zn, and the RL, SA, and RV in the Ⅲ diameter range reached the maximum at 200 µmol·L-1 Zn, which were significantly higher than those without Zn treatment. The comprehensive evaluation of the growth tolerance of maize seedlings showed that 100 µmol·L-1 and 200 µmol·L-1 Zn had better effects on alleviating Cd toxicity. Comprehensive analysis showed that the application of appropriate concentration of Zn could reduce the Cd content in maize seedlings, the Cd uptake capacity, and Cd uptake efficiency of roots; increase the biomass accumulation of maize seedlings; reduce the effect of Cd toxicity on root architecture; reduce the effect on the light and system; and improve the tolerance of maize seedlings to Cd.


Asunto(s)
Plantones , Contaminantes del Suelo , Zinc , Cadmio , Zea mays , Raíces de Plantas , Clorofila
16.
Huan Jing Ke Xue ; 45(6): 3649-3660, 2024 Jun 08.
Artículo en Zh | MEDLINE | ID: mdl-38897784

RESUMEN

This research aimed to clarify the effects of exogenously applied chitosan on the physiological characteristics, antioxidant activities, and Cd accumulation of wheat (Triticum aestivum L.) seedlings under cadmium (Cd) stress and to identify the key indicators based on the partial least squares model. The wheat variety studied was Bainong207 (BN207), and Cd-stress was achieved by growing seedlings in a hydroponic culture experiment with 10 and 25 µmol·L-1 Cd2+ added to the culture solution. It was found that both Cd-stress at 10 and 25 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Cd-stress. The Cd-stress also increased H2O2 and MDA accumulation and the degree of cell membrane lipid peroxidation and affected the activities of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). Under Cd stress, exogenous chitosan decreased the Cd content in the aboveground and underground parts of wheat by 13.22 %-21.63 % and 7.92 %-28.32 % and reduced Cd accumulation in the aboveground and underground parts by 5.37 %-6.71 % and 1.91 %-4.09 %, respectively. Whereas exogenous chitosan application significantly reduced the content of H2O2 in roots and aboveground parts of wheat by 38.21 %-47.46 % and 45.81 %-55.73 % and MDA content by 37.65 %-48.12 % and 29.87 %-32.51 %, it increased the activities of SOD and POD in roots by 2.78 %-5.61 % and 13.81 %-18.33 %, respectively. In summary, exogenous chitosan can improve the photosynthetic characteristics and antioxidant enzyme activities of wheat seedlings under Cd stress, reduce the content and accumulation of Cd in the root and aboveground parts of wheat, and alleviate the damage of lipid peroxidation to the cell membrane. All of these results provide the basal data for the application of exogenous chitosan to alleviate Cd toxicity to wheat seedlings.


Asunto(s)
Antioxidantes , Cadmio , Quitosano , Plantones , Triticum , Triticum/metabolismo , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Cadmio/toxicidad , Cadmio/metabolismo , Quitosano/metabolismo , Quitosano/farmacología , Plantones/efectos de los fármacos , Plantones/metabolismo , Antioxidantes/metabolismo , Estrés Fisiológico/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
17.
Huan Jing Ke Xue ; 45(2): 1141-1149, 2024 Feb 08.
Artículo en Zh | MEDLINE | ID: mdl-38471951

RESUMEN

This research aimed to clarify the mitigative effect of exogenously applied rare earth element cerium (Ce) on the growth, zinc (Zn) accumulation, and physiological characteristics of wheat (Triticum aestivum L.) seedlings under Zn stress. The wheat variety studied was Bainong307 (BN307), and Zn stress was achieved by growing seedlings in a hydroponic culture experiment with 500 µmol·L-1 Zn2 + added to the culture solution. It was found that Zn stress at 500 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Zn stress. The Zn stress also increased MDA accumulation and the degree of cell membrane lipid peroxidation and reduced soluble protein contents and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). On the contrary, exogenous Ce decreased the adsorption and transport of Zn by the root system and alleviated the damage of Zn stress to wheat seedlings. Specifically, the increase in chlorophyll content (chlorophyll a, chlorophyll b, and total chlorophyll) and photosynthetic parameters, the enhancement of antioxidant enzymes activities and soluble protein levels, and the reduction in MDA content and the damage of lipid peroxidation to the cell membrane were all driven by exogenous Ce, which ultimately led to the increase in dry matter biomass of the root system and shoot. In summary, these results provide basic data for the application of exogenous Ce to alleviate Zn toxicity to plants.


Asunto(s)
Cerio , Zinc , Zinc/metabolismo , Antioxidantes/metabolismo , Plantones , Triticum , Cerio/metabolismo , Cerio/farmacología , Clorofila A , Superóxido Dismutasa/metabolismo , Clorofila , Estrés Oxidativo
18.
J Proteome Res ; 12(11): 4846-61, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24074260

RESUMEN

Proteomic studies were performed to identify the protein species involved in copper (Cu) stress responses in common wheat. Two-week-old wheat seedlings were exposed to 100 µM CuSO4 treatment for 3 days. Growth of shoots and roots was markedly inhibited and lipid peroxidation was greatly increased. Cu was readily absorbed by wheat seedlings, with greater Cu contents in roots than in leaves. Using 2-DE method, 98 protein spots showed significantly enhanced or reduced abundance, of which 93 were successfully identified. Of these identified protein species, 49 and 44 were found in roots and leaves, respectively. Abundance of most of identified protein species, which function in signal transduction, stress defense, and energy production, was significantly enhanced, while that of many protein species involved in carbohydrate metabolism, protein metabolism, and photosynthesis was severely reduced. The Cu-responsive protein interaction network revealed 36 key proteins, most of which may be regulated by abscisic acid (ABA), ethylene, jasmonic acid (JA), and so on. Exogenous JA application showed a protective effect against Cu stress and significantly increased transcripts of the glutathione S-transferase (GST) gene. This study provides insight into the molecular mechanisms of Cu responses in higher plants.


Asunto(s)
Sulfato de Cobre/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Estrés Fisiológico/genética , Triticum/genética , Análisis de Varianza , Sulfato de Cobre/farmacocinética , Ciclopentanos/farmacología , Cartilla de ADN/genética , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas/genética , Glutatión Transferasa/metabolismo , Procesamiento de Imagen Asistido por Computador , Peroxidación de Lípido/efectos de los fármacos , Oxilipinas/farmacología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Triticum/metabolismo
19.
Biochim Biophys Acta ; 1824(12): 1324-33, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22868037

RESUMEN

The influence of salicylic acid (SA) on the salt tolerance mechanism in seedlings of common wheat (Triticum aestivum L.) was investigated using physiological measurements combined with global expression profiling (proteomics). In the present study, 0.5mM SA significantly reduced NaCl-induced growth inhibition in wheat seedlings, manifesting as increased fresh weights, dry weights, and photosynthetic pigments, but decreased lipid peroxidation. Two-week-old wheat seedlings treated with 0.5mM SA, 250 mM NaCl and 250 mM NaCl+0.5mM SA for 3 days were used for the proteomic analyses. In total, 39 proteins differentially regulated by both salt and SA were revealed by 2D PAGE, and 38 proteins were identified by MALDI-TOF/TOF MS. The identified proteins were involved in various cellular responses and metabolic processes including signal transduction, stress defense, energy, metabolism, photosynthesis, and others of unknown function. All protein spots involved in signal transduction and the defense response were significantly upregulated by SA under salt stress, suggesting that these proteins could play a role in the SA-induced salt resistance in wheat seedlings.


Asunto(s)
Proteínas de Plantas/análisis , Proteómica/métodos , Ácido Salicílico/farmacología , Tolerancia a la Sal/efectos de los fármacos , Plantones/química , Triticum/química , Secuencia de Aminoácidos , Peroxidación de Lípido , Fotosíntesis
20.
J Hazard Mater ; 452: 131219, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36940527

RESUMEN

Arsenate (AsV) is one of the most common forms of arsenic (As) in environment and plant high-affinity phosphate transporters (PHT1s) are the primary plant AsV transporters. However, few PHT1s involved in AsV absorption have been identified in crops. In our previous study, TaPHT1;3, TaPHT1;6 and TaPHT1;9 were identified to function in phosphate absorption. Here, their AsV absorption capacities were evaluated using several experiments. Ectopic expression in yeast mutants indicated that TaPHT1;9 had the highest AsV absorption rates, followed by TaPHT1;6, while not for TaPHT1;3. Under AsV stress, further, BSMV-VIGS-mediated TaPHT1;9-silencing wheat plants exhibited higher AsV tolerance and lower As concentrations than TaPHT1;6-silenced plants, whereas TaPHT1;3-silencing plants had similar phenotype and AsV concentrations to control. These suggested that TaPHT1;9 and TaPHT1;6 possessed AsV absorption capacity with the former showing higher activities. Under hydroponic condition, furthermore, CRISPR-edited TaPHT1;9 wheat mutants showed the enhanced tolerance to AsV with decreased As distributions and concentrations, whereas TaPHT1;9 ectopic expression transgenic rice plants had the opposite results. Also, under AsV-contaminated soil condition, TaPHT1;9 transgenic rice plants exhibited depressed AsV tolerance with increased As concentrations in roots, straws and grains. Moreover, Pi addition alleviated the AsV toxicity. These suggested that TaPHT1;9 should be a candidate target gene for AsV phytoremediation.


Asunto(s)
Arseniatos , Arsénico , Arseniatos/toxicidad , Arseniatos/metabolismo , Triticum/genética , Triticum/metabolismo , Biodegradación Ambiental , Arsénico/toxicidad , Arsénico/metabolismo , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA