Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2405157, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39126174

RESUMEN

Electrochemical oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR) are greatly significant in renewable energy-related devices and carbon-neutral closed cycle, while the development of robust and highly efficient electrocatalysts has remained challenges. Herein, a hybrid electrocatalyst, featuring axial N-coordinated Fe single atom sites on hierarchically N, P-codoped porous carbon support and Fe nanoclusters as electron reservoir (FeNCs/FeSAs-NPC), is fabricated via in situ thermal transformation of the precursor of a supramolecular polymer initiated by intermolecular hydrogen bonds co-assembly. The FeNCs/FeSAs-NPC catalyst manifests superior oxygen reduction activity with a half-wave potential of 0.91 V in alkaline solution, as well as high CO2 to CO Faraday efficiency (FE) of surpassing 90% in a wide potential window from -0.40 to -0.85 V, along with excellent electrochemical durability. Theoretical calculations indicate that the electron reservoir effect of Fe nanoclusters can trigger the electron redistribution of the atomic Fe moieties, facilitating the activation of O2 and CO2 molecules, lowering the energy barriers for rate-determining step, and thus contributing to the accelerated ORR and CO2RR kinetics. This work offers an effective design of electron coupling catalysts that have advanced single atoms coexisting with nanoclusters for efficient ORR and CO2RR.

2.
Toxicol Appl Pharmacol ; 486: 116946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679241

RESUMEN

The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.


Asunto(s)
Antihipertensivos , Trastorno por Déficit de Atención con Hiperactividad , Conducta Animal , Captopril , Microbioma Gastrointestinal , Efectos Tardíos de la Exposición Prenatal , Ratas Endogámicas SHR , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Embarazo , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Femenino , Antihipertensivos/farmacología , Captopril/farmacología , Masculino , Ratas , Conducta Animal/efectos de los fármacos , Labetalol/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipertensión Inducida en el Embarazo/inducido químicamente , Dopamina/metabolismo
3.
Circ Res ; 131(9): e120-e134, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36164984

RESUMEN

BACKGROUND: Despite available clinical management strategies, chronic kidney disease (CKD) is associated with severe morbidity and mortality worldwide, which beckons new solutions. Host-microbial interactions with a depletion of Faecalibacterium prausnitzii in CKD are reported. However, the mechanisms about if and how F prausnitzii can be used as a probiotic to treat CKD remains unknown. METHODS: We evaluated the microbial compositions in 2 independent CKD populations for any potential probiotic. Next, we investigated if supplementation of such probiotic in a mouse CKD model can restore gut-renal homeostasis as monitored by its effects on suppression on renal inflammation, improvement in gut permeability and renal function. Last, we investigated the molecular mechanisms underlying the probiotic-induced beneficial outcomes. RESULTS: We observed significant depletion of Faecalibacterium in the patients with CKD in both Western (n=283) and Eastern populations (n=75). Supplementation of F prausnitzii to CKD mice reduced renal dysfunction, renal inflammation, and lowered the serum levels of various uremic toxins. These are coupled with improved gut microbial ecology and intestinal integrity. Moreover, we demonstrated that the beneficial effects in kidney induced by F prausnitzii-derived butyrate were through the GPR (G protein-coupled receptor)-43. CONCLUSIONS: Using a mouse CKD model, we uncovered a novel beneficial role of F prausnitzii in the restoration of renal function in CKD, which is, at least in part, attributed to the butyrate-mediated GPR-43 signaling in the kidney. Our study provides the necessary foundation to harness the therapeutic potential of F prausnitzii for ameliorating CKD.


Asunto(s)
Faecalibacterium prausnitzii , Insuficiencia Renal Crónica , Animales , Butiratos/farmacología , Butiratos/uso terapéutico , Modelos Animales de Enfermedad , Inflamación , Riñón/fisiología , Receptores Acoplados a Proteínas G/genética
4.
Pestic Biochem Physiol ; 202: 105957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879339

RESUMEN

Sitobion miscanthi is a destructive wheat pest responsible for significant wheat yield losses. Pirimicarb, one of the most important representatives of N, N-dimethylcarbamate insecticides, is widely used to control wheat aphids. In present work, heterozygous S431F mutation of acetylcholinesterase 1 (AChE1) was identified and verified in three pirimicarb-resistant S. miscanthi populations (two field populations (HA and HS, >955.8-fold) and one lab-selected population (PirR, 486.1-fold)), which has not been reported in S. miscanthi yet. The molecular docking results revealed that AChE1 containing the S431F mutation of S. miscanthi (SmAChE1S431F) showed higher free binding energy to three insecticides (pirimicarb, omethoate, and methomyl) than wild-type AChE1 of S. miscanthi (SmAChE1). Enzyme kinetic and inhibition experiments showed that the recombinant SmAChE1S431F was more insensitive to pirimicarb and omethoate than the recombinant SmAChE1. Furthermore, two overexpression P450 genes (CYP6K1 and CYP6A14) associated with pirimicarb resistance of S. miscanthi were verified by RNAi. These results suggested both target alteration and enhanced metabolism contributed to high pirimicarb resistance of S. miscanthi in the field and laboratory. These findings lay a foundation for further elucidating the mechanism of pirimicarb resistance in S. miscanthi, and have important implications for the resistance management of S. miscanthi control.


Asunto(s)
Acetilcolinesterasa , Áfidos , Carbamatos , Sistema Enzimático del Citocromo P-450 , Resistencia a los Insecticidas , Insecticidas , Mutación , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Animales , Resistencia a los Insecticidas/genética , Áfidos/genética , Áfidos/efectos de los fármacos , Insecticidas/farmacología , Carbamatos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Pirimidinas/farmacología , Simulación del Acoplamiento Molecular , Triticum/genética , Dimetoato/análogos & derivados
5.
Phys Chem Chem Phys ; 25(20): 13989-13998, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37194311

RESUMEN

The existence of non-proline cis-peptide bond conformations of protonated triglycine proposed by us has been verified through a recent IR-IR double resonance experiment. However, the scope of such unique structures in protonated oligopeptides and whether protonation at amide oxygen is more stable than that at traditional amino nitrogen remain unsolved. In this study, the most stable conformers of a series of protonated oligopeptides were fully searched. Our findings reveal that the special cis-peptide bond structure appears with high energies for diglycine and is energetically less favored for tetra- and pentapeptides, while it acts as the global minimum only for tripeptides. To explore the formation mechanism of the cis-peptide bond, electrostatic potential analysis, and intramolecular interactions were analyzed. Advanced theoretical calculations confirmed that amino nitrogen is still preferred as the protonated site in most cases except glycylalanylglycine(GAG). The energy difference between the two protonated isomers of GAG is only 0.03 kcal mol-1, indicating that the tripeptide is most likely to be protonated on the amide oxygen first. We also conducted chemical (infrared (IR)) and electronic (X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine structure spectra (NEXAFS)) structure calculations of these peptides to identify their notable differences unambiguously. This study thus provides valuable information for exploring the scope of cis-peptide bond conformation and the competition between two different protonated ways.


Asunto(s)
Oligopéptidos , Protones , Oligopéptidos/química , Péptidos/química , Amidas , Nitrógeno , Oxígeno
6.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674577

RESUMEN

SNAI2 (Snai2) is a zinc-finger transcriptional repressor that belongs to the Snail family. The accumulated evidence suggests that SNAI2 exhibits biphasic effects on regulating a stem-like phenotype in various types of cells, both normal and malignant. In this study, by exogenously expressing SNAI2 in SiHa cells, SNAI2 exhibited the capacity to inhibit a stem-like phenotype in cervical cancer cells. The SNAI2-overexpressing cells inhibited cell growth, tumorsphere formation, tumor growth, enhanced sensitivity to cisplatin, reduced stem cell-related factors' expression, and lowered tumor initiating frequency. In addition, the EPCAMhigh cells sorted from SiHa cells exhibited an enhanced capacity to maintain a stem-like phenotype. Further study demonstrated that the trans-suppression of EPCAM expression by SNAI2 led to blockage of the nuclear translocation of ß-catenin, as well as reduction in SOX2 and c-Myc expression in SiHa and HeLa cells, but induction in SNAI2 knockdown cells (CaSki), which would be responsible for the attenuation of the stem-like phenotype in cervical cancer cells mediated by SNAI2. All of these results demonstrated that SNAI2 could attenuate the stem-like phenotype in cervical cancer cells through the EPCAM/ß-catenin axis.


Asunto(s)
Neoplasias del Cuello Uterino , beta Catenina , Humanos , Femenino , beta Catenina/metabolismo , Neoplasias del Cuello Uterino/patología , Molécula de Adhesión Celular Epitelial/genética , Células HeLa , Factores de Transcripción de la Familia Snail/genética , Línea Celular Tumoral , Fenotipo
7.
Angew Chem Int Ed Engl ; 62(47): e202314259, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37845195

RESUMEN

Hydronium-ion batteries have received significant attention owing to the merits of extraordinary sustainability and excellent rate abilities. However, achieving high-performance hydronium-ion batteries remains a challenge due to the inferior properties of anode materials in strong acid electrolyte. Herein, a hydronium-ion battery is constructed which is based on a diquinoxalino [2,3-a:2',3'-c] phenazine (HATN) anode and a MnO2 @graphite felt cathode in a hybrid acidic electrolyte. The fast kinetics of hydronium-ion insertion/extraction into HATN electrode endows the HATN//MnO2 @GF battery with enhanced electrochemical performance. This battery exhibits an excellent rate performance (266 mAh g-1 at 0.5 A g-1 , 97 mAh g-1 at 50 A g-1 ), attractive energy density (182.1 Wh kg-1 ) and power density (31.2 kW kg-1 ), along with long-term cycle stability. These results shed light on the development of advanced hydronium-ion batteries.

8.
Toxicol Appl Pharmacol ; 429: 115701, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34453990

RESUMEN

Gut dysbiosis and dysregulation of gut-brain communication have been identified in hypertensive patients and animal models. Previous studies have shown that probiotic or prebiotic treatments exert positive effects on the pathophysiology of hypertension. This study aimed to examine the hypothesis that the microbiota-gut-brain axis is involved in the antihypertensive effects of curcumin, a potential prebiotic obtained from Curcuma longa. Male 8- to 10-week-old spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were divided into four groups: WKY rats and SHRs treated with vehicle and SHRs treated with curcumin in dosage of 100 or 300 mg/kg/day for 12 weeks. Our results show that the elevated blood pressure of SHRs was markedly decreased in both curcumin-treated groups. Curcumin treatment also altered the gut microbial composition and improved intestinal pathology and integrity. These factors were associated with reduced neuroinflammation and oxidative stress in the hypothalamus paraventricular nucleus (PVN). Moreover, curcumin treatment increased butyrate levels in the plasma, which may be the result of increased butyrate-producing gut microorganisms. In addition, curcumin treatment also activated G protein-coupled receptor 43 (GPR 43) in the PVN. These results indicate that curcumin reshapes the composition of the gut microbiota and ameliorates the dysregulation of the gut-brain communication to induce antihypertensive effects.


Asunto(s)
Antihipertensivos/farmacología , Bacterias/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Eje Cerebro-Intestino/efectos de los fármacos , Curcumina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Butiratos/sangre , Cardiomegalia/metabolismo , Cardiomegalia/microbiología , Cardiomegalia/fisiopatología , Cardiomegalia/prevención & control , Modelos Animales de Enfermedad , Disbiosis , Hipertensión/metabolismo , Hipertensión/microbiología , Hipertensión/fisiopatología , Mediadores de Inflamación/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/fisiopatología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores Acoplados a Proteínas G/metabolismo
9.
Physiol Genomics ; 52(3): 121-132, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31869283

RESUMEN

Fecal matter transfer from hypertensive patients and animals into normotensive animals increases blood pressure, strengthening the evidence for gut-microbiota interactions in the control of blood pressure. However, cellular and molecular events involved in gut dysbiosis-associated hypertension remain poorly understood. Therefore, our objective in this study was to use gene expression profiling to characterize the gut epithelium layer in the colon in hypertension. We observed significant suppression of components of T cell receptor (TCR) signaling in the colonic epithelium of spontaneously hypertensive rats (SHR) when compared with Wistar Kyoto (WKY) normotensive rats. Western blot analysis confirmed lower expression of key proteins including T cell surface glycoprotein CD3 gamma chain (Cd3g) and lymphocyte cytosolic protein 2 (Lcp2). Furthermore, lower expression of cytokines and receptors responsible for lymphocyte proliferation, differentiation, and activation (e.g., Il12r, Il15ra, Il7, Il16, Tgfb1) was observed in the colonic epithelium of the SHR. Finally, Alpi and its product, intestinal alkaline phosphatase, primarily localized in the epithelial cells, were profoundly lower in the SHR. These observations demonstrate that the colonic epithelium undergoes functional changes linked to altered immune, barrier function, and dysbiosis in hypertension.


Asunto(s)
Colon/metabolismo , Microbioma Gastrointestinal/genética , Hipertensión/metabolismo , Mucosa Intestinal/metabolismo , Transcriptoma , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Presión Sanguínea , Complejo CD3/metabolismo , Citocinas/metabolismo , Disbiosis , Isoenzimas/metabolismo , Masculino , Fosfoproteínas/metabolismo , RNA-Seq , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores de Antígenos de Linfocitos T/metabolismo
10.
Toxicol Appl Pharmacol ; 394: 114950, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32147540

RESUMEN

The hypothalamic paraventricular nucleus (PVN) plays crucial roles in central cardiovascular regulation. Increasing evidence in humans and rodents shows that vitamin D intake is important for achieving optimal cardiovascular function. The purpose of this study was to investigate whether calcitriol, an active form of vitamin D, improves autonomic and cardiovascular function in hypertensive rats and whether PVN oxidative stress and inflammation are involved in these beneficial effects. Male spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats were treated with either calcitriol (40 ng/day) or vehicle (0.11 µL/h) through chronic PVN infusion for 4 weeks. Blood pressure and heart rate were recorded continuously by radiotelemetry. PVN tissue, heart and plasma were collected for molecular and histological analysis. Compared to WKY rats, SHR exhibited increased systolic blood pressure, sympathetic drive, and cardiac hypertrophy and remodeling. These were associated with higher mRNA and protein expression levels of high mobility box 1 (HMGB1), receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), proinflammatory cytokines, NADPH oxidase subunit in the PVN. In addition, increased norepinephrine in plasma, elevated reactive oxygen species levels and activation of microglia in the PVN were also observed in SHR. Chronic calcitriol treatment ameliorated these changes but not in WKY rats. Our results demonstrate that chronic infusion of calcitriol in the PVN ameliorates hypertensive responses, sympathoexcitation and retains cardiovascular function in SHR. Reduced inflammation and oxidative stress within the PVN are involved in these calcitriol-induced effects.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Enfermedades del Sistema Nervioso Autónomo/tratamiento farmacológico , Calcitriol/uso terapéutico , Agonistas de los Canales de Calcio/uso terapéutico , Hipertensión/tratamiento farmacológico , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Animales , Enfermedades del Sistema Nervioso Autónomo/genética , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/genética , Masculino , Estrés Oxidativo/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
11.
Toxicol Appl Pharmacol ; 394: 114953, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32165127

RESUMEN

Exercise training is one of the major non-pharmacological treatments for hypertension. However, the central mechanism by which exercise training attenuates the hypertensive responses remains unclear. Irisin is a muscle-secreted cytokine derived from fibronectin type III domain containing 5 (FNDC5) that will be released into the circulation during exercise. We hypothesized that irisin may play a role in the blood pressure regulation by exercise. To examine the hypothesis, our study investigated the effect of irisin on hypertension and its central mechanism. The study was performed in spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats. We found that intravenous injection of irisin effectively reduced blood pressure, plasma norepinephrine, paraventricular nucleus (PVN) levels of neuronal activation, oxidative stress and inflammation in SHRs. Moreover, irisin activated nuclear factor E2-related factor-2 (Nrf2) and restored the imbalance of neurotransmitters in the PVN. Our study also found PVN knockdown of Nrf2 abolished the protective effects of irisin on hypertension. These findings demonstrate irisin can improve hypertension via Nrf2-mediated antioxidant in the PVN.


Asunto(s)
Antihipertensivos/farmacología , Fibronectinas/farmacología , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Citocinas/metabolismo , Neurotransmisores/metabolismo , Norepinefrina/sangre , Estrés Oxidativo/efectos de los fármacos , Esfuerzo Físico , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
12.
Neuroendocrinology ; 110(11-12): 899-913, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31671427

RESUMEN

BACKGROUND: Inflammation and oxidative stress play important roles in energy imbalance and its complications. Recent research indicates that hypothalamic inflammation may contribute to the pathogenesis of metabolic syndrome and cardiac dysfunction, but the mechanisms remain unclear. We hypothesized that suppression of the proinflammatory IKKß/NF-κB pathway in the hypothalamus can improve energy balance and cardiac function in type 2 diabetic (T2D) rats. METHODS: Normal and T2D rats received bilateral hypothalamic arcuate nucleus (ARC) infusions of the IKKß inhibitor SC-514 or vehicle via osmotic minipump. Metabolic phenotyping, immunohistochemical analyses, and biochemical analyses were used to investigate the outcomes of inhibition of the hypothalamic IKKß. Echocardiography and glucometer were used for measuring cardiac function and blood glucose, respectively. Blood samples were collected for the evaluation of circulating proinflammatory cytokines. Heart was harvested for cardiac morphology evaluations. The ARC was harvested and analyzed for IKKß, NF-κB, proinflammatory cytokines, reactive oxygen species (ROS), and NAD(P)H (gp91phox, p47phox) oxidase activity levels and neuropeptides. RESULTS: Compared with normal rats, T2D rats were characterized by hyperglycemia, hyperinsulinemia, glucose intolerance, cardiac dysfunction, as well as higher ARC levels of IKKß, NF-κB, proinflammatory cytokines, ROS, gp91phox, and p47phox. ARC infusion of the IKKß inhibitor SC-514 attenuated all these changes in T2D rats, but not in normal rats. CONCLUSIONS: Our results indicate that the hypothalamic IKKß/NF-κB pathway plays a key role in modulating energy imbalance and cardiac dysfunction, suggesting its potential therapeutic role during type 2 diabetes mellitus.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/inmunología , Núcleo Arqueado del Hipotálamo/metabolismo , Glucemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Ecocardiografía , Quinasa I-kappa B/antagonistas & inhibidores , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Inhibidores de Proteínas Quinasas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología
13.
J Phys Chem A ; 124(11): 2215-2224, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32091898

RESUMEN

The chemical and electronic structures of the 21st and 22nd proteinogenic amino acid selenocysteine (Sec), pyrrolysine (Pyl), and their derivatives (deprotonated and protonated ions) were extensively characterized for the first time. Through the fragment based step-by-step research on their potential energy surface (PES), electronic energies of the most stable conformers of Sec, Pyl and the related ions were finally determined at the advanced CBS-QB3 and DSD-PBEP86-D3(BJ)/aug-cc-pVTZ levels, respectively, with the identification of many new low-energy conformers. The infrared spectra (IR) at 298 K of the most abundant conformers in different forms were scaled by comparison with the anharmonic frequency calculations and analyzed comparing with the experimental spectra of similar molecules. The characteristic soft X-ray spectra (including X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine-structure spectra (NEXAFS)) of the most stable conformers at 498 K were also simulated. In particular, the two possible protonated configurations of Pyl can be clearly distinguished by their different spectral features. Furthermore, a small binding energy intersection appeared around 293 eV at the C 1s edge between the canonical and protonated Pyl conformers, which is different from all the previous studies. This work thus filled the gap in our knowledge by providing detailed information on the chemical and electronic structures of Sec and Pyl and will be a useful guidance for future experimental research.

14.
Phys Chem Chem Phys ; 21(32): 17893-17900, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31380529

RESUMEN

The dispersion interaction was reported to play a critical role in the stabilization of model dipeptide Z-Arg-OH, even greater than the conventional hydrogen bond (HB), which is opposite to the traditional opinion. Here the conformation of Z-Arg-OH has been systematically searched by the effective fragment based step-by-step strategy. All the newly-found low-energy conformers determined at the advanced DSD-PBEP86-D3(BJ)/aug-cc-pVTZ level are clearly in the stretched form with strong conventional HBs, rather than the reported folded structures with emphasis on the dispersion interactions. The simulated IR spectra of the stretched conformers fit better than those of the folded ones compared with the previous experimental observations. Near-edge X-ray absorption fine-structure (NEXAFS) spectra and X-ray photoelectron spectra (XPS) at C, N and O K-edges have also been simulated to unambiguously identify different isomers. This work thus provides valuable insight into the competitions between the conventional HB and the dispersion interactions and demonstrates that the conventional hydrogen bonding is still more important for such small peptides.


Asunto(s)
Arginina/análogos & derivados , Arginina/química , Dipéptidos/química , Modelos Moleculares , Enlace de Hidrógeno , Isomerismo , Fenómenos Físicos , Conformación Proteica , Estabilidad Proteica , Solventes/química , Termodinámica
15.
J Med Internet Res ; 21(12): e14909, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31793887

RESUMEN

BACKGROUND: Atrial fibrillation is the most common recurrent arrhythmia in clinical practice, with most clinical events occurring outside the hospital. Low detection and nonadherence to guidelines are the primary obstacles to atrial fibrillation management. Photoplethysmography is a novel technology developed for atrial fibrillation screening. However, there has been limited validation of photoplethysmography-based smart devices for the detection of atrial fibrillation and its underlying clinical factors impacting detection. OBJECTIVE: This study aimed to explore the feasibility of photoplethysmography-based smart devices for the detection of atrial fibrillation in real-world settings. METHODS: Subjects aged ≥18 years (n=361) were recruited from September 14 to October 16, 2018, for screening of atrial fibrillation with active measurement, initiated by the users, using photoplethysmography-based smart wearable devices (ie, a smart band or smart watches). Of these, 200 subjects were also automatically and periodically monitored for 14 days with a smart band. The baseline diagnosis of "suspected" atrial fibrillation was confirmed by electrocardiogram and physical examination. The sensitivity and accuracy of photoplethysmography-based smart devices for monitoring atrial fibrillation were evaluated. RESULTS: A total of 2353 active measurement signals and 23,864 periodic measurement signals were recorded. Eleven subjects were confirmed to have persistent atrial fibrillation, and 20 were confirmed to have paroxysmal atrial fibrillation. Smart devices demonstrated >91% predictive ability for atrial fibrillation. The sensitivity and specificity of devices in detecting atrial fibrillation among active recording of the 361 subjects were 100% and about 99%, respectively. For subjects with persistent atrial fibrillation, 127 (97.0%) active measurements and 2240 (99.2%) periodic measurements were identified as atrial fibrillation by the algorithm. For subjects with paroxysmal atrial fibrillation, 36 (17%) active measurements and 717 (19.8%) periodic measurements were identified as atrial fibrillation by the algorithm. All persistent atrial fibrillation cases could be detected as "atrial fibrillation episodes" by the photoplethysmography algorithm on the first monitoring day, while 14 (70%) patients with paroxysmal atrial fibrillation demonstrated "atrial fibrillation episodes" within the first 6 days. The average time to detect paroxysmal atrial fibrillation was 2 days (interquartile range: 1.25-5.75) by active measurement and 1 day (interquartile range: 1.00-2.00) by periodic measurement (P=.10). The first detection time of atrial fibrillation burden of <50% per 24 hours was 4 days by active measurement and 2 days by periodic measurementThe first detection time of atrial fibrillation burden of >50% per 24 hours was 1 day for both active and periodic measurements (active measurement: P=.02, periodic measurement: P=.03). CONCLUSIONS: Photoplethysmography-based smart devices demonstrated good atrial fibrillation predictive ability in both active and periodic measurements. However, atrial fibrillation type could impact detection, resulting in increased monitoring time. TRIAL REGISTRATION: Chinese Clinical Trial Registry of the International Clinical Trials Registry Platform of the World Health Organization ChiCTR-OOC-17014138; http://www.chictr.org.cn/showprojen.aspx?proj=24191.


Asunto(s)
Fibrilación Atrial/diagnóstico , Fotopletismografía/normas , Adulto , Fibrilación Atrial/fisiopatología , Estudios de Cohortes , Electrocardiografía , Femenino , Humanos , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Aplicaciones Móviles/normas , Monitoreo Fisiológico , Proyectos Piloto , Sensibilidad y Especificidad , Dispositivos Electrónicos Vestibles/normas
16.
Cell Physiol Biochem ; 48(3): 1369-1381, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30048986

RESUMEN

BACKGROUND/AIMS: Exercise training (ExT) was associated with cardiovascular diseases including hypertension. The rostral ventrolateral medulla (RVLM) is a key region for central control of blood pressure and sympathetic nerve activity. Therefore, this study aimed to investigate the mechanisms within RVLM that can influence exercise training induced effects in salt-induced hypertension. METHODS: Male Wistar rats were fed with a normal salt (0.3%) (NS) or a high salt (8%) (HS) diet for 12 weeks to induce hypertension. Then these rats were given moderate-intensity ExT for a period of 12 weeks. RVLM was used to determine glutamate and gamma-aminobutyric acid (HPLC), phosphorylated IKKß, Fra-LI, 67-kDa isoform of glutamate decarboxylase (GAD67), proinflammatory cytokines (PIC) and NADPH-oxidase (NOX) subunits expression (Immunohistochemistry and Immunofluorescence, Western blotting). PIC and NF-κB p65 activity in the plasma were evaluated by ELISA studies. Renal sympathetic nerve activity (RSNA) was recorded and analyzed using the PowerLab system. RESULTS: High salt diet resulted in increased mean arterial pressure and cardiac hypertrophy. These high salt diet rats had higher RVLM levels of glutamate, PIC, phosphorylated IKKß, NF-κB p65 activity, Fra-LI, superoxide, NOX-2 (gp91phox) and 4, and lower RVLM levels of gamma-aminobutyric acid and GAD67, and higher plasma levels of PIC, norepinephrine, and higher RSNA. ExT attenuated these changes in salt-induced hypertensive rats. CONCLUSIONS: These findings suggest that high salt diet increases the activity of NF-κB and the levels of PIC and oxidative stress, and induces an imbalance between excitatory and inhibitory neurotransmitters in the RVLM. ExT attenuates hypertension and cardiac hypertrophy partially mediated by attenuating oxidative stress and modulating neurotransmitters in the RVLM.


Asunto(s)
Presión Sanguínea , Citocinas/metabolismo , Hipertensión/fisiopatología , Bulbo Raquídeo/fisiopatología , Neurotransmisores/metabolismo , Estrés Oxidativo , Condicionamiento Físico Animal , Animales , Citocinas/análisis , Terapia por Ejercicio , Hipertensión/metabolismo , Hipertensión/terapia , Riñón/inervación , Riñón/fisiopatología , Masculino , Bulbo Raquídeo/metabolismo , NADPH Oxidasas/análisis , NADPH Oxidasas/metabolismo , Neurotransmisores/análisis , Ratas Wistar , Cloruro de Sodio Dietético/metabolismo , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología
17.
J Neuroinflammation ; 15(1): 95, 2018 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-29573749

RESUMEN

BACKGROUND: Inflammation has been implicated in the development of cardiovascular disease. We determined whether nod-like receptor with pyrin domain containing 3 (NLRP3) involved in the process of prehypertension, central blockade of NLRP3 decreased inflammation reaction, regulated neurohormonal excitation, and delayed the progression of prehypertension. METHODS: Prehypertensive rats were induced by 8% salt diet. The rats on high-salt diet for 1 month were administered a specific NLRP3 blocker in the hypothalamic paraventricular nucleus (PVN) for 4 weeks. ELISA, western blotting, immunohistochemistry, and flow cytometry were used to measure NLRP3 cascade proteins, pro-inflammation cytokines (PICs), chemokine ligand 2 (CCL2), C-X-C chemokine receptor type 3 (CXCR3), vascular cell adhesion molecule 1 (VCAM-1), neurotransmitters, and leukocytes count detection, respectively. RESULTS: NLRP3 expression in PVN was increased significantly in prehypertensive rats, accompanied by increased number of microglia, CD4+, CD8+ T cell, and CD8+ microglia. Expressions of PICs, CCL2, CXCR3, and VCAM-1 significantly increased. The balance between 67-kDa isoform of glutamate decarboxylase (GAD67) and tyrosine hydroxylase (TH) was damaged. Plasma norepinephrine (NE) in prehypertensive rats was increased and gamma-aminobutyric acid (GABA) was reduced. NLRP3 blockade significantly decreased blood pressure, reduced PICs, CCL2, VCAM-1 expression in PVN, and restored neurotransmitters. Blood pressure and inflammatory markers were upregulated after termination of central blockage NLRP3. CONCLUSIONS: Salt-induced prehypertension is partly due to the role of NLRP3 in PVN. Blockade of brain NLRP3 attenuates prehypertensive response, possibly via downregulating the cascade reaction triggered by inflammation and restoring the balance of neurotransmitters.


Asunto(s)
Citocinas/metabolismo , Hipertensión/complicaciones , Inflamación/etiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neurotransmisores/metabolismo , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Glutamato Descarboxilasa/metabolismo , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Proteínas de Microfilamentos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Sprague-Dawley , Cloruro de Sodio Dietético/toxicidad , Tirosina 3-Monooxigenasa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
18.
Neural Comput ; 30(12): 3189-3226, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30314427

RESUMEN

Neurons communicate nonlinearly through spike activities. Generalized linear models (GLMs) describe spike activities with a cascade of a linear combination across inputs, a static nonlinear function, and an inhomogeneous Bernoulli or Poisson process, or Cox process if a self-history term is considered. This structure considers the output nonlinearity in spike generation but excludes the nonlinear interaction among input neurons. Recent studies extend GLMs by modeling the interaction among input neurons with a quadratic function, which considers the interaction between every pair of input spikes. However, quadratic effects may not fully capture the nonlinear nature of input interaction. We therefore propose a staged point-process model to describe the nonlinear interaction among inputs using a few hidden units, which follows the idea of artificial neural networks. The output firing probability conditioned on inputs is formed as a cascade of two linear-nonlinear (a linear combination plus a static nonlinear function) stages and an inhomogeneous Bernoulli process. Parameters of this model are estimated by maximizing the log likelihood on output spike trains. Unlike the iterative reweighted least squares algorithm used in GLMs, where the performance is guaranteed by the concave condition, we propose a modified Levenberg-Marquardt (L-M) algorithm, which directly calculates the Hessian matrix of the log likelihood, for the nonlinear optimization in our model. The proposed model is tested on both synthetic data and real spike train data recorded from the dorsal premotor cortex and primary motor cortex of a monkey performing a center-out task. Performances are evaluated by discrete-time rescaled Kolmogorov-Smirnov tests, where our model statistically outperforms a GLM and its quadratic extension, with a higher goodness-of-fit in the prediction results. In addition, the staged point-process model describes nonlinear interaction among input neurons with fewer parameters than quadratic models, and the modified L-M algorithm also demonstrates fast convergence.


Asunto(s)
Algoritmos , Encéfalo/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Humanos , Dinámicas no Lineales
19.
Toxicol Appl Pharmacol ; 333: 100-109, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28842207

RESUMEN

Reactive oxygen species (ROS) in the paraventricular nucleus (PVN) play a pivotal role in the pathogenesis of hypertension. Nuclear factor E2-related factor-2 (Nrf2) is an important transcription factor that modulates cell antioxidant defense response against oxidative stress. The present study aimed to explore the efficacy of PVN administration of tert-butylhydroquinone (tBHQ), a selective Nrf2 activator, in hypertensive rats. 16-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were used in this study. These rats were chronic bilateral PVN infusion of tBHQ (0.8µg/day), or oxygen free radical scavenger tempol (20µg/h), or vehicle for 2weeks. SHR rats had higher mean arterial pressure (MAP), plasma norepinephrine (NE) levels, and sympathetic nerve activity (RSNA) and lower PVN levels of Nrf2, hemeoxygenase-1 (HO-1), superoxide dismutase-1 (SOD1) and catalase (CAT) as compared with those in the WKY group. Bilateral PVN infusion of tBHQ or tempol significantly reduced MAP, RSNA, plasma NE levels in SHR rats. In addition, tBHQ treatment enhanced the nuclear accumulation of Nrf2 and increased the expression of HO-1, CAT and SOD1 in SHR rats. Furthermore, tBHQ attenuated PVN levels of ROS, the expression of proinflammatory cytokines and restored the imbalance of neurotransmitters in PVN. Knockdown of Nrf2 in the PVN by adeno-associated virus mediated small interfering RNA abrogated the protective effects of tBHQ on hypertension. These findings suggest that PVN administration of tBHQ can attenuate hypertension by activation of the Nrf2-mediated signaling pathway.


Asunto(s)
Antihipertensivos/farmacología , Hidroquinonas/farmacología , Hipertensión/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Adenoviridae/genética , Animales , Antihipertensivos/uso terapéutico , Presión Arterial/efectos de los fármacos , Hidroquinonas/uso terapéutico , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , ARN Interferente Pequeño/genética , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos
20.
Phys Chem Chem Phys ; 19(23): 15030-15038, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28555233

RESUMEN

Extensive ab initio investigations have been performed to characterize stable conformers of protonated triglycine (GGGH) in the gas phase. Calculations using the composite CBS-QB3 method confirmed that the most favorable site of protonation on triglycine at 298 K is still the traditional amino nitrogen, rather than the more-recently reported amide oxygen. Furthermore, a non-proline cis-peptide bond conformer is identified for the first time as the global minimum of GGGH. Further transition state calculations considering the temperature effects explained why the previous experimental infrared multiple photon dissociation (IRMPD) spectrum contains a combination of two local minima, rather than a global one. First-principles simulations have been performed for near-edge X-ray absorption fine-structure (NEXAFS) spectra and X-ray photoelectron spectra (XPS) at the C, N and O K-edges to identify the notable spectral differences that enable the unambiguous identification of different protonated forms. The calculated proton affinity (PA) and gas basicity (GB) of triglycine are in excellent agreement with the experimental values. Our study thus provides valuable insights into the protonation of short peptides and illustrates the competition between cis and trans peptide bonds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA