Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 186(7): 1352-1368.e18, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001500

RESUMEN

Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.


Asunto(s)
Corteza Auditiva , Ratones , Animales , Corteza Auditiva/metabolismo , Tálamo/fisiología , Neuronas/metabolismo , Cuerpos Geniculados , Interneuronas/fisiología , Parvalbúminas/metabolismo
2.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38124211

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and stereotyped behaviors. Although major advances in basic research on autism have been achieved in the past decade, and behavioral interventions can mitigate the difficulties that individuals with autism experience, little is known about the many fundamental issues of the interventions, and no specific medication has demonstrated efficiency for the core symptoms of ASD. Intermittent hypobaric hypoxia (IHH) is characterized by repeated exposure to lowered atmospheric pressure and oxygen levels, which triggers multiple physiological adaptations in the body. Here, using two mouse models of ASD, male Shank3B -/- and Fmr1 -/y mice, we found that IHH training at an altitude of 5,000 m for 4 h per day, for 14 consecutive days, ameliorated autistic-like behaviors. Moreover, IHH training enhanced hypoxia inducible factor (HIF) 1α in the dorsal raphe nucleus (DRN) and activated the DRN serotonergic neurons. Infusion of cobalt chloride into the DRN, to mimic IHH in increasing HIF1α expression or genetically knockdown PHD2 to upregulate HIF1α expression in the DRN serotonergic neurons, alleviated autistic-like behaviors in Shank3B -/- mice. In contrast, downregulation of HIF1α in DRN serotonergic neurons induced compulsive behaviors. Furthermore, upregulating HIF1α in DRN serotonergic neurons increased the firing rates of these neurons, whereas downregulation of HIF1α in DRN serotonergic neurons decreased their firing rates. These findings suggest that IHH activated DRN serotonergic neurons via upregulation of HIF1α, and thus ameliorated autistic-like phenotypes, providing a novel therapeutic option for ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Masculino , Animales , Trastorno Autístico/genética , Trastorno Autístico/terapia , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/terapia , Núcleo Dorsal del Rafe , Neuronas Serotoninérgicas/fisiología , Hipoxia , Fenotipo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
3.
Lung ; 201(2): 225-234, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36928143

RESUMEN

PURPOSE: Hyperoxia-induced apoptosis in alveolar epithelial type II cells (AECIIs) plays a critical role in the development of bronchopulmonary dysplasia (BPD). Melatonin has been shown to improve BPD. However, the protective effect of melatonin on hyperoxia-induced apoptosis in AECIIs and the precise mechanisms involved remain unclear. METHODS: Human alveolar epithelial type II A549 cells were treated with hyperoxia as an in vitro model to investigate the antiapoptotic mechanism of melatonin. CCK-8 assays were performed to investigate the viability of A549 cells. Hoechst 33,258 staining was carried out to quantify apoptosis in A549 cells. The protein expression levels of E26 oncogene homolog 1 (ETS1), Bcl-2, Bax, Bim, Wnt, ß-catenin, AKT and phosphorylated AKT were measured by western blotting. LY294002, SC79 and the downregulation of ETS1, melatonin receptor 1 (MT1) and MT2 with specific siRNAs were used to investigate the role of the PI3K/AKT pathway, ETS1, MT1 and MT2 in hyperoxia-induced apoptosis in A549 cells. RESULTS: Melatonin prevented hyperoxia-induced apoptosis in A549 cells, and the upregulation of E26 oncogene homolog 1 (ETS1) contributed to the antiapoptotic effect of melatonin. Melatonin activated the PI3K/AKT axis, which led to ETS1 upregulation and inhibited apoptosis in hyperoxia-exposed A549 cells. Furthermore, melatonin-induced activation of the PI3K/AKT axis, upregulation of ETS1 and inhibition of apoptosis were reversed by melatonin receptor 2 (MT2) siRNA in hyperoxia-exposed A549 cells. CONCLUSION: Melatonin prevents hyperoxia-induced apoptosis by activating the MT2/PI3K/AKT/ETS1 axis in alveolar epithelial cells.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Melatonina , Recién Nacido , Humanos , Células Epiteliales Alveolares , Hiperoxia/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Receptores de Melatonina/metabolismo , Transducción de Señal , Apoptosis , Displasia Broncopulmonar/metabolismo , Células Epiteliales/metabolismo , Proteína Proto-Oncogénica c-ets-1
4.
Int J Ophthalmol ; 17(4): 638-645, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638263

RESUMEN

AIM: To investigate the protective effects, antioxidant potential, and anti-inflammatory mechanisms of eicosane on glutamate-induced cell damage and on N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell (RGC) injury in a mouse model of glaucoma. METHODS: The protective effects of eicosane on the rat R28 retinal precursor cell line were assessed using cell counting kit-8 assays and Hoechst-propidium iodide staining. Intracellular reactive oxygen species (ROS) production was measured using the fluorescent probe 2'-7'-dichlorofluorescin diacetate and flow cytometry. The protective role of eicosane on NMDA-induced RGC injury in a mouse glaucoma model was determined by immunostaining of frozen sections of retina. The effects of eicosane on the metabolome of the retina in mice with NMDA-induced RGC damage were evaluated by liquid chromatography-mass spectroscopy (LC-MS) and untargeted metabolomics analyses. RESULTS: Eicosane treatment significantly attenuated glutamate-induced damage to R28 cells in vitro. Eicosane also protected RGCs against NMDA-induced injury in a mouse glaucoma model. Untargeted metabolomics analyses showed that eicosane increased multiple metabolites, including L-arginine and L-carnitine, in the retina. CONCLUSION: Eicosane has protective effects, antioxidant potential, and anti-inflammatory properties in an in vitro model of glutamate-induced cell damage and in an in vivo model of NMDA-induced RGC injury in mouse glaucoma through modulation of L-arginine and/or L-carnitine metabolism.

5.
Redox Biol ; 69: 103005, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150991

RESUMEN

Major depressive disorder (MDD) is a devastating condition. Although progress has been made in the past seven decades, patients with MDD continue to receive an inadequate treatment, primarily due to the late onset of first-line antidepressant drugs and to their acute withdrawal symptoms. Resilience is the ability to rebound from adversity in a healthy manner and many people have psychological resilience. Revealing the mechanisms and identifying methods promoting resilience will hopefully lead to more effective prevention strategies and treatments for depression. In this study, we found that intermittent hypobaric hypoxia training (IHHT), a method for training pilots and mountaineers, enhanced psychological resilience in adult mice. IHHT produced a sustained antidepressant-like effect in mouse models of depression by inducing long-term (up to 3 months after this treatment) overexpression of hypoxia-inducible factor (HIF)-1α in the dorsal raphe nucleus (DRN) of adult mice. Moreover, DRN-infusion of cobalt chloride, which mimics hypoxia increasing HIF-1α expression, triggered a rapid and long-lasting antidepressant-like effect. Down-regulation of HIF-1α in the DRN serotonergic (DRN5-HT) neurons attenuated the effects of IHHT. HIF-1α translationally regulated the expression of P2X2, and conditionally knocking out P2rx2 (encodes P2X2 receptors) in DRN5-HT neurons, in turn, attenuated the sustained antidepressant-like effect of IHHT, but not its acute effect. In line with these results, a single sub-anesthetic dose of ketamine enhanced HIF-1α-P2X2 signaling, which is essential for its rapid and long-lasting antidepressant-like effect. Notably, we found that P2X2 protein levels were significantly lower in the DRN of patients with MDD than that of control subjects. Together, these findings elucidate the molecular mechanism underlying IHHT promoting psychological resilience and highlight enhancing HIF-1α-P2X2 signaling in DRN5-HT neurons as a potential avenue for screening novel therapeutic treatments for MDD.


Asunto(s)
Trastorno Depresivo Mayor , Resiliencia Psicológica , Humanos , Ratones , Animales , Núcleo Dorsal del Rafe/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Antidepresivos/farmacología , Hipoxia , Receptores Purinérgicos P2X2/metabolismo
6.
Neuroreport ; 29(14): 1151-1156, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-29975256

RESUMEN

Several previous studies have reported that asthma patients have abnormal brain activities, whereas alterations in the resting-state network still remain unknown. The aim of this study was to investigate the changes in functional network centrality in asthma patients using voxel-wise degree centrality (DC) method. Asthma patients and healthy controls (HCs) were matched closely in age, sex, and education of participants. The DC method was used to evaluate the functional network centrality. The receiver operating characteristic curve was used to distinguish the asthma group from the HCs group. The Pearson correlation coefficient was used to explore the relationship between the observed mean values of DC in different brain areas and the behavioral performance. Compared with HCs, DC values were significantly decreased in the right middle temporal gyrus and the right putamen of asthma patients. In contrast, in asthma patients, DC values were markedly increased in the right posterior lobe of the cerebellum, right inferior temporal gyrus, left superior frontal gyrus, left postcentral gyrus and inferior parietal lobule, left middle frontal gyrus, and left postcentral gyrus. However, there was no relationship between the observed mean DC values in different brain areas and the behavioral performance. The results showed that the DC values were altered in various brain regions of asthma patients, which were related to default mode network, the cortex-basal ganglia network, the frontoparietal network, and the sensorimotor network, leading to some useful information for clinical studies in asthma patients.


Asunto(s)
Asma/fisiopatología , Mapeo Encefálico , Cerebelo/fisiopatología , Lóbulo Frontal/fisiopatología , Adulto , Anciano , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Lóbulo Temporal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA