RESUMEN
Prenatal exposure to methamphetamine (METH) is an issue of global concern due to its adverse effects on offspring, particularly its impact on liver health, an area still not fully understood. Inulin, a recognized prebiotic, is thought to potentially ameliorate these developmental disorders and toxic injuries in progeny. To investigate the effects of prenatal METH exposure on the liver and the role of gut microbiota, we established a murine model, the subjects of which were exposed to METH prenatally and subsequently treated with inulin. Our findings indicate that prenatal METH exposure causes liver damage in offspring, as evidenced by a decreased liver index, histopathological changes, diminished glycogen synthesis, hepatic dysfunction, and alterations in mRNA profiles. Furthermore, it impairs the antioxidant system and induces oxidative stress, possibly due to changes in cecal microbiota and dysregulation of bile acid homeostasis. However, maternal inulin supplementation appears to restore the gut microbiota in offspring and mitigate the hepatotoxic effects induced by prenatal METH exposure. Our study provides definitive evidence of METH's transgenerational hepatotoxicity and suggests that maternal inulin supplementation could be an effective preventive strategy.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Metanfetamina , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Ratones , Animales , Humanos , Metanfetamina/toxicidad , Inulina/farmacología , Suplementos Dietéticos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & controlRESUMEN
2-Ethylhexyl diphenyl phosphate (EHDPHP), a widely used organophosphorus flame retardant (OPFR), is ubiquitous in daily life because of its extensive application in plastic production. EHDPHPs, which are only superficially applied and not chemically bonded to products, are released into the environment, posing potential health risks. With increasing environmental concentrations, EHDPHP is a growing threat, particularly to individuals with preexisting health conditions who are more susceptible to environmental pollutants. This study examined the effects of EHDPHP exposure in a colitis model, reflecting a rising chronic health issue, by assessing changes in neuroinflammation and neurobehavioral abnormalities. Healthy and dextran sulfate sodium (DSS)-induced colitis C57BL/6â¯J mice were treated with either 0.2â¯% Tween or EHDPHP solution (10â¯mg/kg body weight/day) for 28 days. The study revealed significant increases in the serum and expression levels of TNFα and IL-1ß, accompanied by depressive and anxiety-like behaviors. Coexposure to EHDPHP and DSS exacerbated these neurobehavioral impairments. RNA sequencing confirmed that EHDPHP triggered inflammation via the PI3K-Akt-NF-κB and Wnt/GSK3ß signaling pathways, as confirmed by Western blot analysis. These findings suggest that EHDPHP aggravates colitis-induced neuroinflammation and neurobehavioral abnormalities, highlighting the harmful impact of EHDPHP, particularly in individuals with preexisting inflammatory conditions.
RESUMEN
PCB126, a type of polychlorinated biphenyl (PCB), is a persistent pollutant found in both biotic and abiotic environments and poses significant public health risks due to its potential to cause cardiac damage with prolonged exposure. Hypoxia-inducible factor-2α (HIF-2α) is part of the hypoxia-inducible factor (HIF) transcription complex family. Previous studies have shown that knocking out or inhibiting HIF-2α expression can ameliorate pulmonary hypertension and right ventricular dysfunction. This study aimed to investigate whether cardiac-specific knockout of HIF-2α can alleviate the cardiotoxicity caused by PCB126. In this study, cardiac-specific knockout mice and wild-type mice were orally administered PCB126 or corn oil (50⯵g/kg/week) for eight weeks. Our findings indicated that PCB126 induces cardiotoxicity and myocardial injury, as evidenced by elevated cardiac enzyme levels and increased cardiac collagen fibers. RNA sequencing revealed that PCB126-induced cardiotoxicity involves the PI3K/Akt and p53 signaling pathways, which was confirmed by western blot analysis. Notably, cardiac-specific knockout of HIF-2α mitigated the damage caused by PCB126, reducing the expression of cardiac enzymes, inflammatory cytokines, and myocardial collagen fibers. Under normal conditions, conditional knockout (CKO) of the HIF-2α gene in cardiomyocytes did not affect the morphology or function of the mouse heart. However, HIF-2α CKO in the heart reduced the cardiotoxic effects of PCB126 by decreasing apoptosis through the PI3K/Akt and p53 signaling pathways. In conclusion, inhibiting HIF-2α expression in cardiomyocytes attenuated PCB126-induced cardiotoxicity by modulating apoptosis through these signaling pathways.
RESUMEN
Methamphetamine (METH) is a psychostimulant drug belonging to the amphetamine-type stimulant class, known to exert male reproductive toxicity. Recent studies suggest that METH can disrupt the gut microbiota. Furthermore, the gut-testis axis concept has gained attention due to the potential link between gut microbiome dysfunction and reproductive health. Nonetheless, the role of the gut microbiota in mediating the impact of METH on male reproductive toxicity remains unclear. In this study, we employed a mouse model exposed to escalating doses of METH to assess sperm quality, testicular pathology, and reproductive hormone levels. The fecal microbiota transplantation method was employed to investigate the effect of gut microbiota on male reproductive toxicity. Transcriptomic, metabolomic, and microbiological analyses were conducted to explore the damage mechanism to the male reproductive system caused by METH. We found that METH exposure led to hormonal disorders, decreased sperm quality, and changes in the gut microbiota and testicular metabolome in mice. Testicular RNA sequencing revealed enrichment of several Gene Ontology terms associated with reproductive processes, as well as PI3K-Akt signaling pathways. FMT conveyed similar reproductive damage from METH-treated mice to healthy recipient mice. The aforementioned findings suggest that the gut microbiota plays a substantial role in facilitating the reproductive toxicity caused by METH, thereby highlighting a prospective avenue for therapeutic intervention in the context of METH-induced infertility.
Asunto(s)
Microbioma Gastrointestinal , Metanfetamina , Reproducción , Testículo , Animales , Metanfetamina/toxicidad , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Testículo/efectos de los fármacos , Testículo/patología , Reproducción/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Ratones Endogámicos C57BL , Estimulantes del Sistema Nervioso Central/toxicidad , Trasplante de Microbiota FecalRESUMEN
In a search for novel nonsugar α-glucosidase inhibitors for diabetes treatment, a series of N-(phenylsulfonyl)thiazole-2-carboxamide derivatives were designed and synthesized, the α-glucosidase inhibitory activities were then evaluated. Several compounds with promising α-glucosidase inhibitory effects were identified. Among these, compound W24 which shows low cytotoxicity and good α-glucosidase inhibitory activity with an IC50 value of 53.0 ± 7.7 µM, is more competitive compared with the commercially available drug acarbose (IC50 = 228.3 ± 9.2 µM). W24 was identified as a promising candidate in the development of α-glucosidase inhibitors. Molecular docking studies and molecular dynamics simulation were also performed to reveal the binding pattern of the active compound to α-glucosidase, and the binding free energy of the best compound W24 was 36.3403 ± 3.91 kcal/mol.
Asunto(s)
Inhibidores de Glicósido Hidrolasas , Tiazoles , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiazoles/farmacología , Tiazoles/química , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Estructura MolecularRESUMEN
CONTEXT: Achyranthes bidentata Blume (ABB), a plant of Amaranthaceae family, has been one of the more commonly used phytomedicine remedies for thousands of years, and recent studies have highlighted the efficacy of its extracts in the treatment of osteoporosis. Nonetheless, a thorough analysis of its benefits is currently absent. OBJECTIVE: This meta-analysis assessed the effects of ABB root extract (ABBRE) on osteoporotic rats and provides a rationale for future clinical studies. METHODS: Searches were conducted in seven different Chinese and English databases, and the search period was from their establishment to January 2024. This study was registered in PROSPERO (CRD42023418917). Selected research regarding the ABBRE treatment of osteoporotic rats, and the corresponding research has distinctly reported outcomes, and the data on the bone mineral density (BMD), bone histomorphometrics, biomechanical parameters, and bone biochemical markers of osteoporotic rats can be extracted. RESULTS: Through screening, 11 studies met the eligibility requirements for inclusion, in which 222 animals were studied. The treatment group with ABBRE exhibited increased bone mineral density (standardized mean difference [SMD] = 1.64, 95% CI = 0.52 to 2.77). Based on subgroup analysis, the greatest increase in bone mineral density was observed when the dose of ABBRE was ≤ 400 mg/kg/day and the duration of treatment was ≤ 12 weeks. CONCLUSIONS: ABBRE is a phytomedicine that can effectively promote the enhancement of bone mineral density and ease osteoporosis. It can be developed into a new alternative therapy by conducting experiments and clinical studies on larger samples.
Asunto(s)
Achyranthes , Densidad Ósea , Osteoporosis , Extractos Vegetales , Animales , Ratas , Achyranthes/química , Densidad Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Osteoporosis/tratamiento farmacológico , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Raíces de Plantas/químicaRESUMEN
Inherent chirality is used to describe chiral cyclic molecules devoid of central, axial, planar, or helical chirality and has tremendous applications in chiral recognition and enantioselective synthesis. Catalytic and divergent syntheses of inherently chiral molecules have attracted increasing interest from chemists. Herein, we report the enantioselective synthesis of inherently chiral tribenzocycloheptene derivatives via chiral phosphoric acid (CPA)-catalyzed condensation of cyclic ketones and hydroxylamines. This chemistry paves the way to accessing the less stable derivatives of 7-membered rings with inherent chirality. A series of chiral tribenzocycloheptene oxime ethers was synthesized in good yields (up to 97 %) with excellent enantioselectivities (up to 99 % ee).
RESUMEN
As a toxic heavy metal, cadmium (Cd) is one of the principal pollutants influencing rice productivity and food security. Despite several studies, the underlying mechanism of Cd response in plants remains largely unclear. Dehydrins are part of the late embryogenesis abundant (LEA) family which protect plants against abiotic stresses. In this study, a Cd-responsive LEA gene, OsDHN2, was functionally characterized. The chromosome localization results indicated that OsDHN2 was located on chromosome 2 of rice. Meanwhile, cis-acting elements, such as MBS (MYB binding site involved in drought-inducibility), ARE (anaerobic induction), and ABRE (abscisic acid), were present in the OsDHN2 promoter region. Expression pattern analysis also showed that OsDHN2 expression was induced in both roots and shoots under Cd stress. Overexpression of OsDHN2 improved Cd tolerance and reduced Cd concentration in yeast. Moreover, increased expression levels of SOD1, CTA1, GSH1, or CTT1 were found in transgenic yeast under Cd stress, suggesting the increased antioxidant enzymatic activities. These results suggested that OsDHN2 is a Cd-responsive gene that has the potential to improve resistance to Cd in rice.
Asunto(s)
Cadmio , Oryza , Cadmio/toxicidad , Cadmio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Biología Computacional , Regulación de la Expresión Génica de las PlantasRESUMEN
Organophosphorus flame retardants (OPFRs), including 2-ethylhexyl diphenyl phosphate (EHDPHP), are prevalent in everyday life due to their broad usage in fields such as healthcare, electronics, industry, and sports. These compounds, added to polymers through physical mixing, can leach into the environment, posing a risk to humans through direct contact or the food chain. Despite known associations with health issues like endocrine disruption, neurotoxicity, and reproductive toxicity, the implications of perinatal EHDPHP exposure on both mothers and offspring are still unclear. This study aimed to investigate the neuroinflammatory effects of EHDPHP and the potential mitigating role of inulin. Pregnant C57 mice were administered either a corn oil control or an EHDPHP solution (300 µg/kg bw/d) from gestation day 7 (GD7) to postnatal day 21 (PND21). Concurrently, mice were provided either regular drinking water or water supplemented with 1% inulin. We found that EHDPHP significantly increased the serum levels of IL-1ß, IL-6, and MDA, but decreased SOD levels in both mothers and pups. These effects were reversed by inulin supplementation. RNA-sequencing revealed that EHDPHP induced inflammation and oxidative stress through the TLR4/NF-κB pathway, which was mitigated by inulin. In conclusion, inulin ameliorated EHDPHP-induced neuroinflammation and oxidative stress in both mothers and offspring, highlighting its potential therapeutic role.
Asunto(s)
Retardadores de Llama , Fosfatos , Embarazo , Ratones , Humanos , Femenino , Animales , Organofosfatos/toxicidad , Inulina , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Retardadores de Llama/toxicidadRESUMEN
Methamphetamine (METH) is a psychostimulant abused worldwide. Its abuse induces intestinal toxicity. Moreover, the gut microbiota is altered by drugs, which induces intestinal injury. Whether gut microbiota mediates METH-induced intestinal toxicity remains to be validated. In the present study, wild-type and TLR4-/- mice were treated with METH. Gut microbiota was determined using 16S rRNA gene sequencing. Transcriptomics of the intestinal mucosa was performed by RNA-Sequencing. Blood levels of pro-inflammatory cytokines and lipopolysaccharide (LPS), the intestinal barrier, and inflammation were also assessed. METH treatment weakened the intestinal barrier and increased pro-inflammatory cytokines and LPS levels in the blood. Moreover, METH treatment significantly decreased the diversity of probiotics but increased the abundance of pathogenic gut microbiota, contributing to the over-production of LPS and disruption of intestinal barrier. Inflammatory pathways were enriched in the intestinal mucosa of METH-treated mice by KEGG analysis. Consistently, activation of the TLR4 pathway was determined in METH-treated mice, which confirmed intestinal inflammation. However, pretreatment with antibiotics or Tlr4 silencing significantly alleviated METH-induced gut microbiota dysbiosis, LPS over-production, intestinal inflammation, and disruption of the intestinal barrier. These findings suggested that the gut microbiota and LPS-mediated inflammation took an important role in METH-induced intestinal injury. Taken together, these findings suggest that METH-induced intestinal injury is mediated by gut microbiota dysbiosis and LPS-associated inflammation.
Asunto(s)
Microbioma Gastrointestinal , Metanfetamina , Animales , Citocinas/metabolismo , Disbiosis/inducido químicamente , Inflamación/inducido químicamente , Mucosa Intestinal/metabolismo , Lipopolisacáridos/toxicidad , Metanfetamina/toxicidad , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismoRESUMEN
BACKGROUND: Compared with the stomach of ruminant cattle, the stomach of horse is small and mainly for chemical digestion, but the microorganisms in the stomach play an important role in maintaining the homeostasis of the internal environment. Due to the complexity of the microbes in the stomach, little is known about the diversity and structure of bacteria in the equine stomach. Grains are the main energy source for plant-eating livestock and energy is derived through enzymatic hydrolysis of grains into glucose or their microbial fermentation into Volatile fatty acids (VFA). However, the mechanism through which these ingested grains are chemically digested as well as the effect of these grains on the stomach remains elusive. This study explored the effects of feeding different grains (corn, oats, and barley) on bacterial diversity, structure, and composition in the foal's stomach content. Furthermore, the effects of different grains on the vitality of starch digestion-related stomach enzymes were investigated. RESULTS: No significant differences were observed (P > 0.05) in the bacterial rarefaction curves of Operational Taxonomic Units (OTUs) and diversity of the stomach microbiota in all foals. This study also revealed the statistical differences for Firmicutes, Cyanobacteria, Actinobacteria, Fibrobacteres, Lactobacillaceae, Streptococcaceae, Unidentified_Clostridiales, Prevotellaceae, Lactobacillus, Streptococcus, Unidentified_Cyanobacteria, Unidentified_Clostridiales, Lactococcus, Sphingomonas, Lactobacillus_hayakitensis, Lactobacillus_equigenerosi, and Clostridium_perfringens. The linear discriminant analysis effect size analysis revealed 9 bacteria at each classification level. The functional analysis of species information by using FAPROTAX software was able to predict 35 functions, and the top 5 functions were chemoheterotrophy, fermentation, animal_parasites_or_symbionts, nitrate_reduction, and aerobic_chemoheterotrophy. The study also revealed statistical differences for pH, glucose concentration, ß-amylase, maltase, and amylase. CONCLUSIONS: The different grains had no significant effect on the microbial diversity of the stomach content of the foal. However, the relative bacterial abundances differed significantly in response to different diets. Particularly, oats fed to the foals significantly increased the relative abundance of Firmicutes, Lactobacillaceae, Lactobacillus, and Lactobacillus_hayakitensis. The grain had no significant effect on the pH of the stomach content, glucose concentration, and enzyme viability in the foal.
Asunto(s)
Alimentación Animal , Bacterias , Digestión , Almidón , Estómago , Animales , Bacterias/clasificación , Grano Comestible , Glucosa , Caballos , Almidón/metabolismo , Estómago/metabolismo , Estómago/microbiologíaRESUMEN
The identification of ante- and post-mortem burns is challenging in forensic pathology. In this study, microarray analysis was used to detect the mRNA expression profiles in the skin of an experimental burn mouse model; the results were validated using RT-qPCR. Differentially expressed mRNAs (DE-mRNAs) were assessed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Our results revealed that mRNA expression of 501 genes was significantly different, of which 273 were upregulated and 228 were downregulated in ante-mortem burned mice skin. The expression levels of eight random mRNAs were consistent when measured using the microarray assay-based method and RT-qPCR. Genes from different functional categories and signalling pathways were enriched, including interleukin-20 binding, type IV hypersensitivity, negative regulation of acute inflammatory response, sensory organ development, endocytosis, neuroactive ligand-receptor interaction, and Jak-STAT signalling pathway. Only five of the eight mRNAs exhibited consistent changes in expression between burned skin samples of mice and human autopsy specimens. Our findings showed that DE-mRNAs revealed using microarray are potential biomarkers of ante-mortem burns. However, DE-mRNAs identified from experimental animal models cannot be directly extended to autopsy specimens without careful validation.
Asunto(s)
Quemaduras , Perfilación de la Expresión Génica , Animales , Humanos , Perfilación de la Expresión Génica/métodos , Proyectos Piloto , Ligandos , Análisis por Micromatrices , Biomarcadores , ARN Mensajero/metabolismo , Interleucinas/genéticaRESUMEN
Alligator weed is reported to have a strong ability to adapt to potassium deficiency (LK) stress. Leaves are the primary organs responsible for photosynthesis of plants. However, quantitative proteomic changes in alligator weed leaves in response to LK stress are largely unknown. In this study, we investigated the physiological and proteomic changes in leaves of alligator weed under LK stress. We found that chloroplast and mesophyll cell contents in palisade tissue increased, and that the total chlorophyll content, superoxide dismutase (SOD) activity and net photosynthetic rate (PN) increased after 15 day of LK treatment, but the soluble protein content decreased. Quantitative proteomic analysis suggested that a total of 119 proteins were differentially abundant proteins (DAPs). KEGG analysis suggested that most represented DAPs were associated with secondary metabolism, the stress response, photosynthesis, protein synthesis, and degradation pathway. The proteomic results were verified using parallel reaction monitoring mass spectrometry (PRM-MS) analysis and quantitative real-time PCR (qRT-PCR)assays. Additional research suggested that overexpression of cationic peroxidase 1 of alligator weed (ApCPX1) in tobacco increased LK tolerance. The seed germination rate, peroxidase (POD) activity, and K+ content increased, and the hydrogen peroxide (H2O2) content decreased in the three transgenic tobacco lines after LK stress. The number of root hairs of the transgenic line was significantly higher than that of WT, and net K efflux rates were severely decreased in the transgenic line under LK stress. These results confirmed that ApCPX1 played positive roles in low-K+ signal sensing. These results provide valuable information on the adaptive mechanisms in leaves of alligator weed under LK stress and will help identify vital functional genes to apply to the molecular breeding of LK-tolerant plants in the future.
Asunto(s)
Peroxidasas/metabolismo , Hojas de la Planta/metabolismo , Malezas/metabolismo , Deficiencia de Potasio/metabolismo , Proteoma , Proteómica , Estrés Fisiológico , Animales , Cromatografía Líquida de Alta Presión , Biología Computacional/métodos , Ontología de Genes , Fenotipo , Proteómica/métodos , Espectrometría de Masas en TándemRESUMEN
The macronutrient potassium is essential to plant growth, development and stress response. Alligator weed (Alternanthera philoxeroides) has a high tolerance to potassium deficiency (LK) stress. The stem is the primary organ responsible for transporting molecules from the underground root system to the aboveground parts of the plant. However, proteomic changes in response to LK stress are largely unknown in alligator weed stems. In this study, we investigated the physiological and proteomic changes in alligator weed stems under LK stress. First, the chlorophyll and soluble protein content and SOD and POD activity were significantly altered after 15 days of LK treatment. The quantitative proteomic analysis suggested that a total of 296 proteins were differentially abundant proteins (DAPs). The functional annotation analysis revealed that LK stress elicited complex proteomic alterations that were involved in oxidative phosphorylation, plant-pathogen interactions, glycolysis/gluconeogenesis, sugar metabolism, and transport in stems. The subcellular locations analysis suggested 104 proteins showed chloroplastic localization, 81 proteins showed cytoplasmic localization and 40 showed nuclear localization. The proteinâ»protein interaction analysis revealed that 56 proteins were involved in the interaction network, including 9 proteins involved in the ribosome network and 9 in the oxidative phosphorylation network. Additionally, the expressed changes of 5 DAPs were similar between the proteomic quantification analysis and the PRM-MS analysis, and the expression levels of eight genes that encode DAPs were further verified using an RT-qPCR analysis. These results provide valuable information on the adaptive mechanisms in alligator weed stems under LK stress and facilitate the development of efficient strategies for genetically engineering potassium-tolerant crops.
Asunto(s)
Amaranthaceae/fisiología , Tallos de la Planta/metabolismo , Malezas/metabolismo , Potasio/farmacología , Proteoma/metabolismo , Estrés Fisiológico/efectos de los fármacos , Amaranthaceae/efectos de los fármacos , Ontología de Genes , Modelos Biológicos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Malezas/efectos de los fármacos , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteómica , Fracciones Subcelulares/metabolismoRESUMEN
Mother nature accomplishes efficient ammonia synthesis via cascade N2 oxidation by lightning strikes followed with enzyme-catalyzed nitrogen oxyanion (NOx -, x = 2,3) reduction. The protein environment of enzymatic centers for NOx --to-NH4 + process greatly inspires the design of glutathione-capped (GSH) quantum dots (QDs) for ammonia synthesis under visible light (440 nm) in tandem with plasma-enabled N2 oxidation. Mechanistic studies reveal that GSH induces positive shift of surface charge to strengthen the interaction between NOx - and QDs. Upon visible light irradiation of QDs, the balanced and rapid hole and electron transfer furnish GS·radicals for 2e-/2H+ alcohol oxidation and H·for 8e-/10H+ NO3 --to-NH4 + reduction simultaneously. For the first time, mmol-scale ammonia synthesis is realized with apparent quantum yields of 5.45% ± 0.64%, and gram-scale synthesis of value-added acetophenone and NH4Cl proceeds with 1:4 stoichiometry and stability, demonstrating promising multielectron and multiproton ammonia synthesis efficiency and sustainability with nature-inspired artificial photocatalysts.
RESUMEN
BACKGROUND & AIMS: The spread of foot-and-mouth disease virus (FMDV) through aerosol droplets among cloven-hoofed ungulates in close contact is a major obstacle for successful animal husbandry. Therefore, the development of suitable mucosal vaccines, especially nasal vaccines, to block the virus at the initial site of infection is crucial. PATIENTS AND METHODS: Here, we constructed eukaryotic expression plasmids containing the T and B-cell epitopes (pTB) of FMDV in tandem with the molecular mucosal adjuvant Fms-like tyrosine kinase receptor 3 ligand (Flt3 ligand, FL) (pTB-FL). Then, the constructed plasmid was electrostatically attached to mannose-modified chitosan-coated poly(lactic-co-glycolic) acid (PLGA) nanospheres (MCS-PLGA-NPs) to obtain an active nasal vaccine targeting the mannose-receptor on the surface of antigen-presenting cells (APCs). RESULTS: The MCS-PLGA-NPs loaded with pTB-FL not only induced a local mucosal immune response, but also induced a systemic immune response in mice. More importantly, the nasal vaccine afforded an 80% protection rate against a highly virulent FMDV strain (AF72) when it was subcutaneously injected into the soles of the feet of guinea pigs. CONCLUSIONS: The nasal vaccine prepared in this study can effectively induce a cross-protective immune response against the challenge with FMDV of same serotype in animals and is promising as a potential FMDV vaccine.
Asunto(s)
Administración Intranasal , Quitosano , Virus de la Fiebre Aftosa , Fiebre Aftosa , Nanosferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Vacunas Virales , Animales , Quitosano/química , Quitosano/administración & dosificación , Virus de la Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/genética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Fiebre Aftosa/prevención & control , Fiebre Aftosa/inmunología , Ratones , Nanosferas/química , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Ratones Endogámicos BALB C , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Ácidos Nucleicos/administración & dosificación , Inmunidad Mucosa , Sistemas de Liberación de MedicamentosRESUMEN
Nanoplastics (NPs) pollution has become a global environmental problem, raising numerous health concerns. However, the cardiotoxicity of NPs exposure and the underlying mechanisms have been understudied to date. To address this issue, we comprehensively evaluated the cardiotoxicity of polystyrene nanoplastics (PS-NPs) in both healthy and pathological states. Briefly, mice were orally exposed to four different concentrations (0 mg/day, 0.1 mg/day, 0.5 mg/day, and 2.5 mg/day) of 100-nm PS-NPs for 6 weeks to assess their cardiotoxicity in a healthy state. Considering that individuals with underlying health conditions are more vulnerable to the adverse effects of pollution, we further investigated the cardiotoxic effects of PS-NPs on pathological states induced by isoprenaline. Results showed that PS-NPs induced cardiomyocyte apoptosis, cardiac fibrosis, and myocardial dysfunction in healthy mice and exacerbated cardiac remodeling in pathological states. RNA sequencing revealed that PS-NPs significantly upregulated homeodomain interacting protein kinase 2 (HIPK2) in the heart and activated the P53 and TGF-beta signaling pathways. Pharmacological inhibition of HIPK2 reduced P53 phosphorylation and inhibited the activation of the TGF-ß1/Smad3 pathway, which in turn decreased PS-NPs-induced cardiotoxicity. This study elucidated the potential mechanisms underlying PS-NPs-induced cardiotoxicity and underscored the importance of evaluating nanoplastics safety, particularly for individuals with pre-existing heart conditions.
Asunto(s)
Cardiotoxicidad , Poliestirenos , Proteínas Serina-Treonina Quinasas , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Proteína p53 Supresora de Tumor , Regulación hacia Arriba , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Cardiotoxicidad/etiología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Poliestirenos/toxicidad , Regulación hacia Arriba/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Nanopartículas/toxicidad , Miocardio/metabolismo , Miocardio/patologíaRESUMEN
Organophosphorus flame retardants (OPFRs), such as 2-ethylhexyl diphenyl phosphate (EHDPHP), are ubiquitously used, leading to pervasive environmental contamination and human health risks. While associations between EHDPHP and health issues such as disruption of hormones, neurotoxic effects, and toxicity to reproduction have been recognized, exposure to EHDPHP during perinatal life and its implications for the intestinal health of dams and their pups have largely been unexplored. This study investigated the intestinal toxicity of EHDPHP and the potential for which inulin was effective. Dams were administered either an EHDPHP solution or a corn oil control from gestation day 7 (GD7) to postnatal day 21 (PND21), with inulin provided in their drinking water. Our results indicate that inulin supplementation mitigates damage to the intestinal epithelium caused by EHDPHP, restores mucus-secreting cells, suppresses intestinal hyperpermeability, and abates intestinal inflammation by curtailing lipopolysaccharide leakage through reshaping of the gut microbiota. A reduction in LPS levels concurrently inhibited the inflammation-associated TLR4/NF-κB pathway. In conclusion, inulin administration may ameliorate intestinal toxicity caused by EHDPHP in dams and pups by reshaping the gut microbiota and suppressing the LPS/TLR4/NF-κB pathway. These findings underscore the efficacy of inulin as a therapeutic agent for managing health risks linked to EHDPHP exposure.
Asunto(s)
Compuestos de Bifenilo , Microbioma Gastrointestinal , Fosfatos , Embarazo , Femenino , Humanos , Fosfatos/farmacología , FN-kappa B , Lipopolisacáridos , Inulina/farmacología , Receptor Toll-Like 4/metabolismo , InflamaciónRESUMEN
A novel moving redox reaction boundary (MRRB) model was developed for studying electrophoretic behaviors of analytes involving redox reaction on the principle of moving reaction boundary (MRB). Traditional potassium permanganate method was used to create the boundary model in agarose gel electrophoresis because of the rapid reaction rate associated with MnO(4)(-) ions and Fe(2+) ions. MRB velocity equation was proposed to describe the general functional relationship between velocity of moving redox reaction boundary (V(MRRB)) and concentration of reactant, and can be extrapolated to similar MRB techniques. Parameters affecting the redox reaction boundary were investigated in detail. Under the selected conditions, good linear relationship between boundary movement distance and time were obtained. The potential application of MRRB in electromigration redox reaction titration was performed in two different concentration levels. The precision of the V(MRRB) was studied and the relative standard deviations were below 8.1%, illustrating the good repeatability achieved in this experiment. The proposed MRRB model enriches the MRB theory and also provides a feasible realization of manual control of redox reaction process in electrophoretic analysis.
Asunto(s)
Electroforesis en Gel de Agar/métodos , Modelos Químicos , Permanganato de Potasio/química , Oxidación-ReducciónRESUMEN
Pseudomonas aeruginosa with difficult-to-treat resistance has been designated as an urgent or serious threat by the CDC in the United States; therefore, novel antibacterial drugs and combination strategies are urgently needed. The sensor kinase RoxS is necessary for the aerobic growth of Pseudomonas aeruginosa. This study aimed to screen candidate RoxS inhibitors and evaluate their efficacy in treating multi-drug-resistant and extensively drug-resistant Pseudomonas aeruginosa in combination with meropenem and amikacin to identify promising combination strategies. RoxS protein structures were constructed using homology modeling and potential RoxS inhibitors, including Ezetimibe, Deferasirox, and Posaconazole, were screened from the FDA-approved ZINC drug database using molecular docking and molecular dynamics simulations. MIC and checkerboard assays were used to determine the in vitro antimicrobial efficacy of the three drugs in combination with antibiotics. The results of in vitro experiments showed an additive effect of 100 µg/mL Deferasirox or 16 µg/mL Posaconazole in combination with meropenem and a synergistic effect of 1.5 µg/mL Deferasirox and amikacin. In summary, these three drugs are potential inhibitors of RoxS, and their combination with meropenem or amikacin is expected to reverse the resistance of P. aeruginosa, providing new combination strategies for the treatment of clinically difficult-to-treat Pseudomonas aeruginosa.