Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 628(8008): 630-638, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538795

RESUMEN

Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Lisosomas , Animales , Humanos , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/ultraestructura , Homeostasis , Longevidad , Lisosomas/metabolismo , Lisosomas/ultraestructura , Secuencias de Aminoácidos , Microscopía Electrónica
2.
Skin Res Technol ; 30(2): e13577, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38284293

RESUMEN

BACKGROUND: Psoriasis is a persistent inflammatory dermatological disorder. Tanshinone IIA (tan-IIA) is a biologically active compound in the self-made Xiao-Yin decoction (SMXYD) and exhibits diverse biological properties, such as anti-proliferative and anti-inflammatory effects. The objective of this investigation was to assess the potential of tan-IIA as a therapeutic agent against psoriasis. METHODS: Network pharmacology was employed to ascertain the active constituents and potential pathways associated with SMXYD and psoriasis. We conducted CCK-8, qRT-PCR, and western blotting to assess the proliferation of HaCaT keratinocytes and the expression of IL-17/IL-23 and PTGS2/NF-κB/AP-1 pathways. Additionally, we used H&E staining, western blotting, and ELISA to evaluate the therapeutic effects and signaling pathways of tan-IIA in psoriasis-like mice induced by imiquimod (IMQ). RESULTS: Network pharmacology analysis identified eight hub compounds. The Th17/IL-17 signaling was found to be a potential therapeutic pathway of SMXYD against psoriasis, with JUN (AP-1) as the core molecule. Next, PTGS2 was selected as the target of tan-IIA against psoriasis using network pharmacology analysis. Molecular docking showed a high affinity between PTGS2 and tan-IIA. Tan-IIA treatment attenuated M-5-induced hyperproliferation and inflammation in HaCaT keratinocytes. Additionally, Tan-IIA downregulated the PTGS2/NF-κB/AP-1 pathway in HaCaT keratinocytes. In the IMQ-induced psoriasis-like mouse, tan-IIA significantly reduced the severity of skin lesions and downregulated the PTGS2/NF-κB/AP-1 pathway. Moreover, the combination of methotrexate (MTX) and tan-IIA further inhibited the IL-17/IL-23 and PTGS2/NF-κB/AP-1 pathways. CONCLUSION: The administration of tan-IIA has shown a positive effect on psoriasis by inhibiting the IL-17/IL-23 and PTGS2/NF-κB/AP-1 pathways. The findings suggest that it has promising qualities that make it a potential candidate for the development of future anti-psoriatic agents.


Asunto(s)
Abietanos , FN-kappa B , Psoriasis , Animales , Ratones , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Imiquimod/efectos adversos , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Queratinocitos/metabolismo , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Factor de Transcripción AP-1/metabolismo
3.
Foods ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38672844

RESUMEN

Colorectal carcinoma (CRC) is a major global health concern, with cancer metastasis being the main cause of patient mortality, and current CRC treatments are challenged by drug resistance. Although natural compounds, especially in foods like hawthorn proanthocyanidin extract (HPOE), have good anticancer activity, their effects on CRC metastasis remain unknown. Therefore, our objective was to investigate the impact and potential mechanisms of HPOE on the movement and infiltration of cells in the HCT116 CRC cells. Firstly, scratch-healing experiments confirmed the anti-migratory and anti-invasive capabilities of HPOE. Then, network pharmacology identified 16 possible targets, including MMP-9. Subsequently, RT-qPCR and Western blotting experiments confirmed that HPOE downregulated epithelial-mesenchymal transition-related factors (N-cadherin and MMP-9) and inhibited Wnt/ß-catenin pathway activation. Finally, these results were experimentally validated using the Wnt pathway activator Licl and inhibitor XAV939. It was confirmed that HPOE had a certain inhibitory effect on the activation of the Wnt signaling pathway caused by the activator Licl and could enhance the inhibitory effect of the inhibitor XAV939. Our findings provide a basis for developing functional foods or dietary supplements, especially positioning HPOE as a functional food raw material for adjuvant treatment of CRC, given its ability to inhibit metastasis through the Wnt/ß-catenin pathway.

4.
Food Res Int ; 186: 114339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729694

RESUMEN

The health-promoting activities of polyphenols and their metabolites originating from germinated quinoa (GQ) are closely related to their digestive behavior, absorption, and colonic fermentation; however, limited knowledge regarding these properties hinder further development. The aim of this study was to provide metabolomic insights into the profile, bioaccessibility, and transepithelial transport of polyphenols from germinated quinoa during in vitro gastrointestinal digestion and Caco-2 cell transport, whilst also investigating the changes in the major polyphenol metabolites and the effects of prebiotics during colonic fermentation. It was found that germination treatment increased the polyphenol content of quinoa by 21.91%. Compared with RQ group, 23 phenolic differential metabolites were upregulated and 47 phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after simulated digestion, 7 kinds of phenolic differential metabolites were upregulated and 17 kinds of phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after cell transport, 7 kinds of phenolic differential metabolites were upregulated and 9 kinds of phenolic differential metabolites were downregulated in GQ group. In addition, GQ improved the bioaccessibilities and transport rates of various polyphenol metabolites. During colonic fermentation, GQ group can also increase the content of SCFAs, reduce pH value, and adjust gut microbial populations by increasing the abundance of Actinobacteria, Bacteroidetes, Verrucomicrobiota, and Spirochaeota at the phylum level, as well as Bifidobacterium, Megamonas, Bifidobacterium, Brevundimonas, and Bacteroides at the genus level. Furthermore, the GQ have significantly inhibited the activity of α-amylase and α-glucosidase. Based on these results, it was possible to elucidate the underlying mechanisms of polyphenol metabolism in GQ and highlight its beneficial effects on the gut microbiota.


Asunto(s)
Chenopodium quinoa , Colon , Digestión , Fermentación , Metabolómica , Polifenoles , Prebióticos , Humanos , Polifenoles/metabolismo , Chenopodium quinoa/metabolismo , Células CACO-2 , Colon/metabolismo , Colon/microbiología , Germinación , Transporte Biológico , Disponibilidad Biológica , Microbioma Gastrointestinal/fisiología
5.
Quant Imaging Med Surg ; 14(1): 579-591, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223078

RESUMEN

Background: Pneumonia can be anatomically classified into lobar, lobular, and interstitial types, with each type associated with different pathogens. Utilizing artificial intelligence (AI) to determine the anatomical classifications of pneumonia and assist in refining the differential diagnosis may offer a more viable and clinically relevant solution. This study aimed to develop a multi-classification model capable of identifying the occurrence of pneumonia in patients by utilizing case-specific computed tomography (CT) information, categorizing the pneumonia type (lobar, lobular, and interstitial pneumonia), and performing segmentation of the associated lesions. Methods: A total of 61 lobar pneumonia patients, 60 lobular pneumonia patients, and 60 interstitial pneumonia patients were consecutively enrolled at our local hospital from June 2020 and May 2022. All selected cases were divided into a training cohort (n=135) and an independent testing cohort (n=46). To generate the ground truth labels for the training process, manual segmentation and labeling were performed by three junior radiologists. Subsequently, the segmentations were manually reviewed and edited by a senior radiologist. AI models were developed to automatically segment the infected lung regions and classify the pneumonia. The accuracy of pneumonia lesion segmentation was analyzed and evaluated using the Dice coefficient. Receiver operating characteristic curves were plotted, and the area under the curve (AUC), accuracy, precision, sensitivity, and specificity were calculated to assess the efficacy of pneumonia classification. Results: Our AI model achieved a Dice coefficient of 0.743 [95% confidence interval (CI): 0.657-0.826] for lesion segmentation in the training set and 0.723 (95% CI: 0.602-0.845) in the test set. In the test set, our model achieved an accuracy of 0.927 (95% CI: 0.876-0.978), precision of 0.889 (95% CI: 0.827-0.951), sensitivity of 0.889 (95% CI: 0.827-0.951), specificity of 0.946 (95% CI: 0.902-0.990), and AUC of 0.989 (95% CI: 0.969-1.000) for pneumonia classification. We trained the model using labels annotated by senior physicians and compared it to a model trained using labels annotated by junior physicians. The Dice coefficient of the model's segmentation improved by 0.014, increasing from 0.709 (95% CI: 0.589-0.830) to 0.723 (95% CI: 0.602-0.845), and the AUC improved by 0.042, rising from 0.947 to 0.989. Conclusions: Our study presents a robust multi-task learning model with substantial promise in enhancing the segmentation and classification of pneumonia in medical imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA