Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(7): e2213670120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749723

RESUMEN

Autophagy supports the fast growth of established tumors and promotes tumor resistance to multiple treatments. Inhibition of autophagy is a promising strategy for tumor therapy. However, effective autophagy inhibitors suitable for clinical use are currently lacking. There is a high demand for identifying novel autophagy drug targets and potent inhibitors with drug-like properties. The transcription factor EB (TFEB) is the central transcriptional regulator of autophagy, which promotes lysosomal biogenesis and functions and systematically up-regulates autophagy. Despite extensive evidence that TFEB is a promising target for autophagy inhibition, no small molecular TFEB inhibitors were reported. Here, we show that an United States Food and Drug Administration (FDA)-approved drug Eltrombopag (EO) binds to the basic helix-loop-helix-leucine zipper domain of TFEB, specifically the bottom surface of helix-loop-helix to clash with DNA recognition, and disrupts TFEB-DNA interaction in vitro and in cellular context. EO selectively inhibits TFEB's transcriptional activity at the genomic scale according to RNA sequencing analyses, blocks autophagy in a dose-dependent manner, and increases the sensitivity of glioblastoma to temozolomide in vivo. Together, this work reveals that TFEB is targetable and presents the first direct TFEB inhibitor EO, a drug compound with great potential to benefit a wide range of cancer therapies by inhibiting autophagy.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Preparaciones Farmacéuticas/metabolismo , Autofagia/genética , Línea Celular Tumoral , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Expresión Génica , Lisosomas/metabolismo
2.
Traffic ; 23(11): 526-537, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36109347

RESUMEN

The prevalence of a high-energy diet and a sedentary lifestyle has increased the incidence of type 2 diabetes (T2D). T2D is a chronic disease characterized by high blood glucose levels and insulin resistance in peripheral tissues. The pathological mechanism of this disease is not fully clear. Accumulated evidence has shown that noncoding RNAs have an essential regulatory role in the progression of diabetes and its complications. The roles of small noncoding RNAs, such as miRNAs, in T2D, have been extensively investigated, while the function of long noncoding RNAs (lncRNAs) in T2D has been unstudied. It has been reported that lncRNAs in T2D play roles in the regulation of pancreatic function, peripheral glucose homeostasis and vascular inflammation. In addition, lncRNAs carried by small extracellular vesicles (sEV) were shown to mediate communication between organs and participate in diabetes progression. Some sEV lncRNAs derived from stem cells are being developed as potential therapeutic agents for diabetic complications. In this review, we summarize the current knowledge relating to lncRNA biogenesis, the mechanisms of lncRNA sorting into sEV and the regulatory roles of lncRNAs and sEV lncRNAs in diabetes. Knowledge of lncRNAs and sEV lncRNAs in diabetes will aid in the development of new therapeutic drugs for T2D in the future.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , MicroARNs , ARN Largo no Codificante , ARN Pequeño no Traducido , Glucemia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Humanos , ARN Largo no Codificante/genética
3.
Small ; : e2306257, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377302

RESUMEN

Due to the disadvantages of poor targeting, slow action, and low effectiveness of current commonly used cancer treatments, including surgery, chemotherapy, and radiotherapy, researchers have turned to DNA as a biomaterial for constructing drug delivery nanocarriers. DNA is favored for its biocompatibility and programmability. In order to overcome the limitations associated with traditional drug delivery systems (DDSs), researchers have developed smart-responsive DNA DDSs that can control drug release in response to specific physical or chemical stimuli at targeted sites. In this review, a summary of multiple targeted ligand structures is provided, various shapes of stable DNA nanomaterials, and different stimuli-responsive drug release strategies in DNA DDSs. Specifically, targeted cell recognition, in vivo stable transport, and controlled drug release of smart DDSs are focused. Finally, the further development prospects and challenges of clinical application of DNA nanomaterials in the field of smart drug delivery are discussed. The objective of this review is to enhance researchers' comprehension regarding the potential application of DNA nanomaterials in precision drug delivery, with the aim of expediting the clinical implementation of intelligent DDSs.

4.
Crit Rev Microbiol ; : 1-15, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967384

RESUMEN

The gut microbiota features an abundance of diverse microorganisms and represents an important component of human physiology and metabolic homeostasis, indicating their roles in a wide array of physiological and pathological processes in the host. Maintaining balance in the gut microbiota is critical for normal functionality as microbial dysbiosis can lead to the occurrence and development of diseases through various mechanisms. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are non-coding RNAs that perform important regulatory functions for many processes. Furthermore, the gut microbiota and lncRNAs/circRNAs are known to interact in a range of both physiological and pathological activities. In this article, we review existing research relevant to the interaction between the gut microbiota and lncRNAs/circRNAs and investigate the role of their crosstalk in the pathogenesis of different diseases. Studies have shown that, the gut microbiota can target lncRNAs ENO1-IT1, BFAL1, and LINC00152 to regulate colorectal cancer development via various signaling pathways. In addition, the gut microbiota can influence mental diseases and lung tumor metastasis by modulating circRNAs such as circNF1-419, circ_0001239, circHIPK2 and mmu_circ_0000730. These findings provide a theoretical basis for disease prevention and treatment and suggest that gut microbiota-lncRNA/circRNA crosstalk has high clinical value.

5.
Cytotherapy ; 26(1): 11-24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37930294

RESUMEN

Mitochondrial DNA (mtDNA) is a critical genome contained within the mitochondria of eukaryotic cells, with many copies present in each mitochondrion. Mutations in mtDNA often are inherited and can lead to severe health problems, including various inherited diseases and premature aging. The lack of efficient repair mechanisms and the susceptibility of mtDNA to damage exacerbate the threat to human health. Heteroplasmy, the presence of different mtDNA genotypes within a single cell, increases the complexity of these diseases and requires an effective editing method for correction. Recently, gene-editing techniques, including programmable nucleases such as restriction endonuclease, zinc finger nuclease, transcription activator-like effector nuclease, clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated 9 and base editors, have provided new tools for editing mtDNA in mammalian cells. Base editors are particularly promising because of their high efficiency and precision in correcting mtDNA mutations. In this review, we discuss the application of these techniques in mitochondrial gene editing and their limitations. We also explore the potential of base editors for mtDNA modification and discuss the opportunities and challenges associated with their application in mitochondrial gene editing. In conclusion, this review highlights the advancements, limitations and opportunities in current mitochondrial gene-editing technologies and approaches. Our insights aim to stimulate the development of new editing strategies that can ultimately alleviate the adverse effects of mitochondrial hereditary diseases.


Asunto(s)
Edición Génica , Genes Mitocondriales , Animales , Humanos , Edición Génica/métodos , Mitocondrias/genética , ADN Mitocondrial/genética , Mutación , Mamíferos/genética
6.
Exp Eye Res ; 239: 109759, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142763

RESUMEN

Early diagnosis is important for improving the outcomes of keratoconus (KC). Stable expression and a closed-loop structure of circular RNAs (circRNAs) make them ideal for the diagnosis and treatment of diseases. However, the expression pattern and potential function of circRNAs in KC is not studied yet. Hence, this study explored the circRNA expression profile of KC corneas through transcriptome sequencing and circRNA expression profile analysis. The diagnostic potential of blood circRNAs for KC was explored by analysing the circRNAs' expression levels of fifty paired blood samples from patients with KC and normal controls. The results showed that 107 significantly upregulated and 145 significantly downregulated circRNAs (|fold change| ≥ 2.0, p-value <0.05) were identified in KC tissues. Eight top differently expressed circRNAs were further validated in more cornea samples. Among them, five circRNAs expressed in peripheral blood, and four circRNAs (circ_0006156, circ_0006117, circ_0000284 and circ_0001801) showed significant downregulation in KC patients' peripheral blood too. The blood circ_0000284 expression levels of early, moderate, and advanced KC patients both were significantly lower than the controls. The blood circ_0006117 expression levels present a positive correlation with corrected distance visual acuity values, and a negative correlation with back elevation values of KC eyes. Notably, the expression levels of these circRNAs distinguished KC patients from their healthy counterparts, with the area under the curve (AUC) of circ_0000284, circ_0001801, and circ_0006117 being 0.7306, 0.6871 and 0.6701, respectively. Further, the AUC value for five circRNAs under the logistic regression model was 0.8203, indicating that they can function as effective biomarkers for the KC diagnostics. In conclusion, the expression of circRNAs showed a relationship with KC, with four significantly differentially expressed circRNAs demonstrating potential as biomarkers for the disease.


Asunto(s)
Queratocono , ARN Circular , Humanos , ARN Circular/genética , Queratocono/diagnóstico , Queratocono/genética , Biomarcadores/metabolismo , Regulación hacia Abajo , Área Bajo la Curva , ARN/genética , ARN/metabolismo
7.
Mol Pharm ; 21(3): 1027-1037, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38315004

RESUMEN

Circular RNAs (circRNAs) have been identified as important regulators in different developmental processes and disease pathogenesis. The loop structure of circRNAs makes them very stable in different conditions and microenvironments. circRNAs can affect microRNA (miRNA) and RNA binding protein (RBP) activity, encode functional proteins and regulate gene transcription. Recently, two circNFIX variants derived from the same gene, the Nuclear Factor I X (NFIX) gene, were determined as participants in the pathological processes of various diseases such as heart diseases and cancers. Both circNFIX variants are exonic circular RNAs and mainly function by sponging miRNAs. In this review, we summarize the current knowledge on circRNAs, elucidate the origins and properties of two circNFIX variants, explore the roles of two circNFIX variants in different diseases, and present clinical perspectives.


Asunto(s)
MicroARNs , Neoplasias , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Factores de Transcripción NFI , MicroARNs/genética , Neoplasias/genética , Microambiente Tumoral
8.
Ann Diagn Pathol ; 69: 152243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128440

RESUMEN

BACKGROUND: Patients with differentiated thyroid cancer (DTC) usually have an excellent prognosis; however, 5 %-15 % develop radioactive iodine-refractory (RAIR) DTC (RAIR-DTC), which has a poor prognosis and limited treatment options. The aim of the present study was to investigate the clinicopathological characteristics of RAIR-DTC in order to provide clinical evidence for timely prediction of the effects of iodine therapy. METHODS: Clinicopathological data for 44 patients with RAIR-DTC and 50 patients with radioiodine-avid DTC (RAIA-DTC) were retrospectively analyzed. The risk factors for RAIR-DTC were evaluated and a RAIR-DTC prediction model was established. RESULTS: RAIR-DTC showed unique clinicopathological features that differed from those of RAIA-DTC; these included age >55 years, a high-risk histological subtype, a large tumor size, a late TNM stage, calcification, distant metastasis, and more than six metastatic lymph nodes. Patients with RAIR-DTC also developed earlier tumor progression. Binary logistic regression analysis showed that distant metastasis, a high-risk histological subtype, and a maximum tumor diameter of ≥12.5 mm were independent risk factors for RAIR-DTC, and the specificity and sensitivity of a combination of these three parameters for the prediction of RAIR-DTC were 98.0 % and 56.8 %, respectively. Decision curve analysis and the calibration curve revealed that the combined prediction of these three parameters had good repeatability and accuracy. CONCLUSION: The clinicopathological features of DTC can effectively predict the effects of iodine therapy. A combination of distant metastasis, a high-risk histological subtype, and a maximum tumor diameter of ≥12.5 mm showed significantly higher prediction accuracy.


Asunto(s)
Adenocarcinoma , Neoplasias de la Tiroides , Humanos , Persona de Mediana Edad , Neoplasias de la Tiroides/radioterapia , Neoplasias de la Tiroides/patología , Radioisótopos de Yodo/uso terapéutico , Estudios Retrospectivos , Adenocarcinoma/tratamiento farmacológico , Pronóstico
9.
Environ Sci Technol ; 57(9): 4039-4049, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808991

RESUMEN

Nitric oxide (NO) is an atmospheric pollutant and climate forcer as well as a key intermediary in the marine nitrogen cycle, but the ocean's NO contribution and production mechanisms remain unclear. Here, high-resolution NO observations were conducted simultaneously in the surface ocean and the lower atmosphere of the Yellow Sea and the East China Sea; moreover, NO production from photolysis and microbial processes was analyzed. The NO sea-air exchange showed uneven distributions (RSD = 349.1%) with an average flux of 5.3 ± 18.5 × 10-17 mol cm-2 s-1. In coastal waters where nitrite photolysis was the predominant source (89.0%), NO concentrations were remarkably higher (84.7%) than the overall average of the study area. The NO from archaeal nitrification accounted for 52.8% of all microbial production (11.0%). We also examined the relationship between gaseous NO and ozone which helped identify sources of atmospheric NO. The sea-to-air flux of NO in coastal waters was narrowed by contaminated air with elevated NO concentrations. These findings indicate that the emissions of NO from coastal waters, mainly controlled by reactive nitrogen inputs, will increase with the reduced terrestrial NO discharge.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Agua de Mar , Óxido Nítrico , Contaminantes Atmosféricos/análisis , Océanos y Mares , China , Monitoreo del Ambiente
10.
Mol Cell ; 59(1): 50-61, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26028536

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs, and they bind to complementary sequences in the three prime untranslated regions (3' UTRs) of target mRNA transcripts, thereby inhibiting mRNA translation or promoting mRNA degradation. Excessive reactive oxygen species (ROS) can cause cell-damaging effects through oxidative modification of macromolecules leading to their inappropriate functions. Such oxidative modification is related to cancers, aging, and neurodegenerative and cardiovascular diseases. Here we report that miRNAs can be oxidatively modified by ROS. We identified that miR-184 upon oxidative modification associates with the 3' UTRs of Bcl-xL and Bcl-w that are not its native targets. The mismatch of oxidized miR-184 with Bcl-xL and Bcl-w is involved in the initiation of apoptosis in the study with rat heart cell line H9c2 and mouse models. Our results reveal a model of ROS in regulating cellular events by oxidatively modifying miRNA.


Asunto(s)
Regiones no Traducidas 3'/genética , MicroARNs/metabolismo , Proteínas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína bcl-X/genética , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis , Línea Celular , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Miocardio/citología , Miocardio/metabolismo , Oxidación-Reducción , Interferencia de ARN , ARN Interferente Pequeño , Ratas
11.
Cell Mol Life Sci ; 79(2): 128, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35133502

RESUMEN

The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.


Asunto(s)
Lisina-ARNt Ligasa/metabolismo , Proteínas Nucleares/metabolismo , Aminoacilación , Células HEK293 , Humanos , Unión Proteica , Biosíntesis de Proteínas
12.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 449-459, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36942990

RESUMEN

Human bone marrow mesenchymal stem cells (hBMMSCs) are a promising cell source for bone engineering owing to their high potential to differentiate into osteoblasts. The objective of the present study is to assess microRNA-126 (miR-126) and examine its effects on the osteogenic differentiation of hBMMSCs. In this study, we investigate the role of miR-126 in the progression of osteogenic differentiation (OD) as well as the apoptosis and inflammation of hBMMSCs during OD induction. OD is induced in hBMMSCs, and matrix mineralization along with other OD-associated markers are evaluated by Alizarin Red S (AR) staining and quantitative PCR (qPCR). Gain- and loss-of-function studies are performed to demonstrate the role of miR-126 in the OD of hBMMSCs. Flow cytometry and qPCR-based cytokine expression studies are performed to investigate the effect of miR-126 on the apoptosis and inflammation of hBMMSCs. The results indicate that miR-126 expression is downregulated during the OD of hBMMSCs. Gain- and loss-of function assays reveal that miR-126 upregulation inhibits the differentiation of hBMMSCs into osteoblasts, whereas the downregulation of miR-126 promotes hBMMSC differentiation, as assessed by the determination of osteogenic genes and alkaline phosphatase activity. Furthermore, the miR-126 level is positively correlated with the production of inflammatory cytokines and apoptotic cell death. Additionally, our results suggest that miR-126 negatively regulates not only B-cell lymphoma 2 (Bcl-2) expression but also the phosphorylation of extracellular signal­regulated protein kinase (ERK) 1/2. Moreover, restoring ERK1/2 activity and upregulating Bcl-2 expression counteract the miR-126-mediated suppression of OD in hBMMSCs by promoting inflammation and apoptosis, respectively. Overall, our findings suggest a novel molecular mechanism relevant to the differentiation of hBMMSCs into osteoblasts, which can potentially facilitate bone formation by counteracting miR-126-mediated suppression of ERK1/2 activity and Bcl-2 expression.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Humanos , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Osteogénesis/genética
13.
Ecotoxicol Environ Saf ; 263: 115391, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37611474

RESUMEN

Cardiac hypertrophy, a kind of cardiomyopathic abnormality, might trigger heart contractile and diastolic dysfunction, and even heart failure. Currently, bisphenols (BPs) including bisphenol A (BPA), and its alternatives bisphenol AF (BPAF), bisphenol F (BPF) and bisphenol S (BPS) are ubiquitously applied in various products and potentially possess high cardiovascular risks for humans. However, the substantial experimental evidences of BPs on heart function, and their structure-related effects on cardiomyocyte hypertrophy are still urgently needed. DNA methylation, a typical epigenetics, play key roles in BPs-induced transcription dysregulation, thereby affecting human health including cardiovascular system. Thus, in this study, we performed RNA-seq and reduced representation bisulfite sequencing (RRBS) to profile the landscapes of BPs-induced cardiotoxicity and to determine the key roles of DNA methylation in the transcription. Further, the capabilities of three BPA analogues, together with BPA, in impacting heart function and changing DNA methylation and transcription were compared. We concluded that similar to BPA, BPAF, BPF and BPS exposure deteriorated heart function in a mouse model, and induced cardiomyocyte hypertrophy in a H9c2 cell line. BPAF, BPF and BPS all played BPA-like roles in both transcriptive and methylated hierarchies. Moreover, we validated the expression levels of four cardiomyocyte hypertrophy related candidate genes, Psmc1, Piptnm2, Maz and Dusp18, which were all upregulated and with DNA hypomethylation. The findings on the induction of BPA analogues on cardiomyocyte hypertrophy and DNA methylation revealed their potential detrimental risks in heart function of humans.


Asunto(s)
Epigénesis Genética , Epigenoma , Humanos , Animales , Ratones , Transcriptoma , Miocitos Cardíacos , Hipertrofia
14.
J Cell Mol Med ; 26(14): 4048-4060, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35748101

RESUMEN

BRAF T1799A mutation is the most common genetic variation in thyroid cancer, resulting in the production of BRAF V600E mutant protein reported to make cells resistant to apoptosis. However, the mechanism by which BRAF V600E regulates cell death remains unknown. We constructed BRAF V600E overexpression and knockdown 8505C and BCPAP papillary and anaplastic thyroid cancer cell to investigate regulatory mechanism of BRAF V600E in cell death induced by staurosporine (STS). Induced BRAF V600E expression attenuated STS-induced papillary and anaplastic thyroid cancer death, while BRAF V600E knockdown aggravated it. TMRM and calcein-AM staining showed that opening of the mitochondrial permeability transition pore (mPTP) during STS-induced cell death could be significantly inhibited by BRAF V600E. Moreover, our study demonstrated that BRAF V600E constitutively activates mitochondrial ERK (mERK) to inhibit GSK-3-dependent CypD phosphorylation, thereby making BRAF V600E mutant tumour cells more resistant to mPTP opening. In the mitochondria of BRAF V600E mutant cells, there was an interaction between ERK1/2 and GSKa/ß, while upon BRAF V600E knockdown, interaction of GSKa/ß to ERK was decreased significantly. These results show that in thyroid cancer, BRAF V600E regulates the mitochondrial permeability transition through the pERK-pGSK-CypD pathway to resist death, providing new intervention targets for BRAF V600E mutant tumours.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Muerte Celular , Glucógeno Sintasa Quinasa 3/genética , Humanos , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Carcinoma Anaplásico de Tiroides/genética , Neoplasias de la Tiroides/patología
15.
BMC Genomics ; 23(1): 330, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484498

RESUMEN

BACKGROUND: Chicken provides humans with a large amount of animal protein every year, in which skeletal muscle plays a leading role. The embryonic skeletal muscle development determines the number of muscle fibers and will affect the muscle production of chickens. CircRNAs are involved in a variety of important biological processes, including muscle development. However, studies on circRNAs in the chicken embryo muscle development are still lacking. RESULTS: In the study, we collected chicken leg muscles at 14 and 20-day embryo ages both in the fast- and slow-growing groups for RNA-seq. We identified 245 and 440 differentially expressed (DE) circRNAs in the comparison group F14vsF20 and S14vsS20 respectively. GO enrichment analysis for the host genes of DE circRNAs showed that biological process (BP) terms in the top 20 related to growth in F14vsF20 were found such as positive regulation of transcription involved in G1/S phase of mitotic cell cycle, multicellular organismal macromolecule metabolic process, and multicellular organismal metabolic process. In group S14vsS20, we also found some BP terms associated with growth in the top 20 including actomyosin structure organization, actin cytoskeleton organization and myofibril assembly. A total of 7 significantly enriched pathways were obtained, containing Adherens junction and Tight junction. Further analysis of those pathways found three crucial host genes MYH9, YBX3, IGF1R in both fast- and slow-growing groups, three important host genes CTNNA3, AFDN and CREBBP only in the fast-growing group, and six host genes FGFR2, ACTN2, COL1A2, CDC42, DOCK1 and MYL3 only in the slow-growing group. In addition, circRNA-miRNA network also revealed some key regulation pairs such as novel_circ_0007646-miR-1625-5p, novel_circ_0007646-miR-1680-5p, novel_circ_0008913-miR-148b-5p, novel_circ_0008906-miR-148b-5p and novel_circ_0001640-miR-1759-3p. CONCLUSIONS: Comprehensive analysis of circRNAs and their targets would contribute to a better understanding of the molecular mechanisms in poultry skeletal muscle and it also plays an important guiding role in the next research.


Asunto(s)
MicroARNs , ARN Circular , Animales , Embrión de Pollo , Pollos/genética , Desarrollo Embrionario/genética , MicroARNs/genética , Músculo Esquelético/metabolismo , ARN Circular/genética
16.
Br J Cancer ; 127(7): 1184-1192, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35624299

RESUMEN

Research in the past decade has uncovered the essential role of the nervous system in the tumour microenvironment. The recent advances in cancer neuroscience, especially the discovery of neuron-tumour synaptic/perisynaptic structures, have revealed the dark side of synaptic proteins in the progression of brain tumours. Here, we provide an overview of the synaptic proteins expressed by tumour cells and analyse their molecular functions and organisation by comparing them with neuronal synaptic proteins. We focus on the studies of neuroligin-3, the glutamate receptors AMPAR and NMDAR and the synaptic scaffold protein DLGAP1, for their newly discovered regulatory role in the proliferation and progression of tumours. Progress in cancer neuroscience has brought novel insights into the treatment of cancers. In the last part of this review, we discuss the therapeutical strategies targeting synaptic proteins and the current challenges and possible toolkits regarding their clinical application in cancer treatment. Our understanding of cancer neuroscience is still in its infancy; deeper investigation of how tumour cells co-opt synaptic signaling will help fulfil the therapeutical potential of the synaptic proteins as promising anti-tumour targets.


Asunto(s)
Neoplasias , Receptores de N-Metil-D-Aspartato , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Microambiente Tumoral
17.
Mol Med ; 28(1): 55, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562651

RESUMEN

BACKGROUND: The aim of this study was to draw a comprehensive mutational landscape of nasopharyngeal carcinoma (NPC) tumors and identify the prognostic factors for distant metastasis-free survival (DMFS). METHODS: A total of forty primary nonkeratinizing NPC patients underwent targeted next-generation sequencing of 450 cancer-relevant genes. Analysis of these sequencing and clinical data was performed comprehensively. Univariate Cox regression analysis and multivariate Lasso-Cox regression analyses were performed to identify factors that predict distant metastasis and construct a risk score model, and seventy percent of patients were randomly selected from among the samples as a validation cohort. A receiver operating characteristic (ROC) curve and Harrell's concordance index (C-index) were used to investigate whether the risk score was superior to the TNM stage in predicting the survival of patients. The survival of patients was determined by Kaplan-Meier curves and log-rank tests. RESULTS: The twenty most frequently mutated genes were identified, such as KMT2D, CYLD, and TP53 et al. Their mutation frequencies of them were compared with those of the COSMIC database and cBioPortal database. N stage, tumor mutational burden (TMB), PIK3CA, and SF3B1 were identified as predictors to build the risk score model. The risk score model showed a higher AUC and C-index than the TNM stage model, regardless of the training cohort or validation cohort. Moreover, this study found that patients with tumors harboring PI3K/AKT or RAS pathway mutations have worse DMFS than their wild-type counterparts. CONCLUSIONS: In this study, we drew a mutational landscape of NPC tumors and established a novel four predictor-based prognostic model, which had much better predictive capacity than TNM stage.


Asunto(s)
Neoplasias Nasofaríngeas , Fosfatidilinositol 3-Quinasas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/genética
18.
Anticancer Drugs ; 33(1): e491-e499, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261923

RESUMEN

The most common pathological subtype of renal carcinoma is RCC, and its development is closely related to immune infiltration. In our study, we investigated the relationship between zinc finger protein 668 and the prognostic risk, clinical characteristics, overall survival and related pathways. We analyzed the association between ZNF668 and immune cell infiltration through the TIMER database. The results showed that the expression of ZNF668 in RCC was higher than that in normal tissues (P < 0.001). The high expression of ZNF668 is clinically relevant, such as tumor stage (P = 0.001) and TNM classification (T: P = 7.37 e-04; N: P = 0.008; M: P < 0.001). Survival analysis showed that patients with high ZNF668 expression had a significantly poor prognosis (P = 0.023). Univariate analysis showed a significant decrease in overall survival in RCC patients with high ZNF668 expression (P = 0.023). Immuno-cell infiltration showed a significant decrease in CD4+ T cell and dendritic cell infiltration in RCC patients with high expression of ZNF668. GO/KEGG analysis showed that multiple pathways were differentially enriched in the high expression pathway of ZNF668, such as complement activation, and estrogen signaling pathway. In conclusion, high ZNF668 expression is a predictor in RCC.


Asunto(s)
Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Proteínas Supresoras de Tumor/genética , Anciano , Biomarcadores de Tumor , Linfocitos T CD4-Positivos/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Proteínas del Sistema Complemento/agonistas , Células Dendríticas/metabolismo , Estrógenos/metabolismo , Femenino , Humanos , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Curva ROC , Transducción de Señal/fisiología , Análisis de Supervivencia
19.
J Pharmacol Sci ; 150(1): 31-40, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35926946

RESUMEN

BACKGROUND: Previous studies have found that blueberry anthocyanin extract (BAE) could prevent diabetic retinopathy (DR) development, but the underlying molecular mechanism is still a mystery. METHODS: Human retinal pigment epithelium cell line ARPE-19 cells were exposed to high concentration glucose (H-Glu) with 25 mM for 24 h, and the cell viability and apoptosis were analyzed by MTT assay and flow cytometry, respectively. The endoplasmic reticulum stress (ERS) markers were determined by western blotting. Dual luciferase assay was applied to investigate the relationship between miR-182 and 8-oxoguanine-DNA glycosylase (OGG1). Furthermore, experiments in vivo were also performed to confirm the function of BAE in DR. RESULTS: The increase of apoptosis, reactive oxygen species (ROS) level and ERS in ARPE-19 cells induced by H-Glu was notably restored by BAE. Meanwhile, BAE greatly inhibited H-Glu-induced miR-182 expression in ARPE-19 cells, and OGG1 was identified to be one of the downstream target moleculars of miR-182. Furthermore, miR-182 overexpression or OGG1 knockdown restored the impact of BAE on H-Glu-treated APRE-19 cells. Even more important, BAE was further confirmed to alleviated the development of DR in diabetes rat models. CONCLUSIONS: BAE significantly inhibited the progression of DR via molecular regulation function between miR-182/OGG1 axis and ROS/ERS.


Asunto(s)
Arándanos Azules (Planta) , ADN Glicosilasas , Diabetes Mellitus , Retinopatía Diabética , MicroARNs , Animales , Antocianinas/farmacología , Apoptosis , Arándanos Azules (Planta)/química , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/genética , Estrés del Retículo Endoplásmico/genética , Glucosa/farmacología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Especies Reactivas de Oxígeno/metabolismo
20.
Anal Bioanal Chem ; 414(20): 6139-6147, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35715586

RESUMEN

Telomerase is a promising diagnostic and prognostic biomarker for cancers. Sensitive, simple, and reliable telomerase activity detection is vital for cancer diagnosis. Herein, we developed an ultrasensitive visualized assay for telomerase activity that combined the exponential amplification reaction (EXPAR) and lateral flow assay for easy and quick signal readout, which we termed as a lateral flow readout-EXPAR (LFR-EXPAR) assay. In the LFR-EXPAR assay, telomerase elongation products initiate the exponential amplification reaction, the generated trigger hybridizes with the reporter to form the recognition site of the nicking enzyme, and the nicking enzyme cuts the reporter strand. The degradation of the reporter can be detected with a universal lateral flow dipstick and read out with the naked eye. After conducting a series of proof-of-concept investigations, the LFR-EXPAR assay was found to achieve a sensitivity comparable to that of a TRAP (telomere repeat amplification protocol) assay. The LFR-EXPAR assay can be used to realize ultrasensitive and point-of-care detection of telomerase without requiring specialized instruments, holding great promise for early cancer diagnosis.


Asunto(s)
Neoplasias , Telomerasa , Humanos , Neoplasias/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Sistemas de Atención de Punto , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA