Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 152(5): 1037-50, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452852

RESUMEN

Although somatic cell reprogramming to generate inducible pluripotent stem cells (iPSCs) is associated with profound epigenetic changes, the roles and mechanisms of epigenetic factors in this process remain poorly understood. Here, we identify Jmjd3 as a potent negative regulator of reprogramming. Jmjd3-deficient MEFs produced significantly more iPSC colonies than did wild-type cells, whereas ectopic expression of Jmjd3 markedly inhibited reprogramming. We show that the inhibitory effects of Jmjd3 are produced through both histone demethylase-dependent and -independent pathways. The latter pathway involves Jmjd3 targeting of PHF20 for ubiquitination and degradation via recruitment of an E3 ligase, Trim26. Importantly, PHF20-deficient MEFs could not be converted to fully reprogrammed iPSCs, even with knockdown of Jmjd3, Ink4a, or p21, indicating that PHF20 is required for reprogramming. Our findings demonstrate, to the best of our knowledge, a previously unrecognized role of Jmjd3 in cellular reprogramming and provide molecular insight into the mechanisms by which the Jmjd3-PHF20 axis controls this process.


Asunto(s)
Reprogramación Celular , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Proteínas de Unión al ADN , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Cinética , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factores de Transcripción , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Regulación hacia Arriba
2.
PLoS Genet ; 19(3): e1010701, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36996023

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1004524.].

3.
Immunity ; 45(5): 1093-1107, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27793594

RESUMEN

Type I interferon (IFN) is critical for controlling pathogen infection; however, its regulatory mechanisms in plasmacytoid cells (pDCs) still remain unclear. Here, we have shown that nucleic acid sensors cGAS-, STING-, MDA5-, MAVS-, or transcription factor IRF3-deficient mice produced high amounts of type I IFN-α and IFN-ß (IFN-α/ß) in the serum and were resistant to lethal plasmodium yoelii YM infection. Robust IFN-α/ß production was abolished when gene encoding nucleic acid sensor TLR7, signaling adaptor MyD88, or transcription factor IRF7 was ablated or pDCs were depleted. Further, we identified SOCS1 as a key negative regulator to inhibit MyD88-dependent type I IFN signaling in pDCs. Finally, we have demonstrated that pDCs, cDCs, and macrophages were required for generating IFN-α/ß-induced subsequent protective immunity. Thus, our findings have identified a critical regulatory mechanism of type I IFN signaling in pDCs and stage-specific function of immune cells in generating potent immunity against lethal YM infection.


Asunto(s)
Inmunidad Adaptativa/inmunología , Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Malaria/inmunología , Transducción de Señal/inmunología , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Técnicas de Silenciamiento del Gen , Ratones , Ratones Noqueados , Plasmodium yoelii , Reacción en Cadena de la Polimerasa
4.
Proc Natl Acad Sci U S A ; 119(11): e2112820119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254909

RESUMEN

SignificanceKarrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL). Karrikins likely require modification in plants to become bioactive. We identify a gene, KUF1, that appears to negatively regulate biosynthesis of KL and metabolism of a specific karrikin. KUF1 expression increases in response to karrikin or KL signaling, thus forming a negative feedback loop that limits further activation of the signaling pathway. This discovery will advance understanding of how karrikins are perceived and how smoke-activated germination evolved. It will also aid identification of the elusive KL.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Furanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Hidrolasas/genética , Piranos/farmacología , Arabidopsis/metabolismo , Plantones/genética , Plantones/metabolismo , Transducción de Señal
5.
Am J Physiol Renal Physiol ; 327(1): F137-F145, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779756

RESUMEN

Polymyxins are a last-resort treatment option for multidrug-resistant gram-negative bacterial infections, but they are associated with nephrotoxicity. Gelofusine was previously shown to reduce polymyxin-associated kidney injury in an animal model. However, the mechanism(s) of renal protection has not been fully elucidated. Here, we report the use of a cell culture model to provide insights into the mechanisms of renal protection. Murine epithelial proximal tubular cells were exposed to polymyxin B. Cell viability, lactate dehydrogenase (LDH) release, polymyxin B uptake, mitochondrial superoxide production, nuclear morphology, and apoptosis activation were evaluated with or without concomitant gelofusine. A megalin knockout cell line was used as an uptake inhibition control. Methionine was included in selected experiments as an antioxidant control. A polymyxin B concentration-dependent reduction in cell viability was observed. Increased viability was observed in megalin knockout cells following comparable polymyxin B exposures. Compared with polymyxin B exposure alone, concomitant gelofusine significantly increased cell viability as well as reduced LDH release, polymyxin B uptake, mitochondrial superoxide, and apoptosis. Gelofusine and methionine were more effective at reducing renal cell injury in combination than either agent alone. In conclusion, the mechanisms of renal protection by gelofusine involve decreasing cellular drug uptake, reducing subsequent oxidative stress and apoptosis activation. These findings would be valuable for translational research into clinical strategies to attenuate drug-associated acute kidney injury.NEW & NOTEWORTHY Gelofusine is a gelatinous saline solution with the potential to attenuate polymyxin-associated nephrotoxicity. We demonstrated that the mechanisms of gelofusine renal protection involve reducing polymyxin B uptake by proximal tubule cells, limiting subsequent oxidative stress and apoptosis activation. In addition, gelofusine was more effective at reducing cellular injury than a known antioxidant control, methionine, and a megalin knockout cell line, indicating that gelofusine likely has additional pharmacological properties besides only megalin inhibition.


Asunto(s)
Antibacterianos , Apoptosis , Polimixina B , Animales , Polimixina B/farmacología , Ratones , Apoptosis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/toxicidad , Supervivencia Celular/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Línea Celular , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo
6.
Clin Exp Pharmacol Physiol ; 51(6): e13866, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719209

RESUMEN

Staphylococcus aureus (S. aureus) pneumonia has become an increasingly important public health problem. Recent evidence suggests that epigenetic modifications are critical in the host immune defence against pathogen infection. In this study, we found that S. aureus infection induces the expression of histone deacetylase 6 (HDAC6) in a dose-dependent manner. Furthermore, by using a S. aureus pneumonia mouse model, we showed that the HDAC6 inhibitor, tubastatin A, demonstrates a protective effect in S. aureus pneumonia, decreasing the mortality and destruction of lung architecture, reducing the bacterial burden in the lungs and inhibiting inflammatory responses. Mechanistic studies in primary bone marrow-derived macrophages demonstrated that the HDAC6 inhibitors, tubastatin A and tubacin, reduced the intracellular bacterial load by promoting bacterial clearance rather than regulating phagocytosis. Finally, N-acetyl-L- cysteine, a widely used reactive oxygen species (ROS) scavenger, antagonized ROS production and significantly inhibited tubastatin A-induced S. aureus clearance. These findings demonstrate that HDAC6 inhibitors promote the bactericidal activity of macrophages by inducing ROS, an important host factor for S. aureus clearance and production. Our study identified HDAC6 as a suitable epigenetic modification target for preventing S. aureus infection, and tubastatin A as a useful compound in treating S. aureus pneumonia.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Macrófagos , Especies Reactivas de Oxígeno , Staphylococcus aureus , Animales , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Neumonía Estafilocócica/tratamiento farmacológico , Neumonía Estafilocócica/microbiología , Neumonía Estafilocócica/metabolismo , Indoles/farmacología , Ratones Endogámicos C57BL , Fagocitosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pulmón/metabolismo , Pulmón/patología
7.
J Biol Chem ; 298(5): 101816, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278430

RESUMEN

Jumonji domain-containing protein-3 (JMJD3), a histone H3 lysine 27 (H3K27) demethylase, promotes endothelial regeneration, but its function in neointimal hyperplasia (NIH) of arteriovenous fistulas (AVFs) has not been explored. In this study, we examined the contribution of endothelial JMJD3 to NIH of AVFs and the mechanisms underlying JMJD3 expression during kidney failure. We found that endothelial JMJD3 expression was negatively associated with NIH of AVFs in patients with kidney failure. JMJD3 expression in endothelial cells (ECs) was also downregulated in the vasculature of chronic kidney disease (CKD) mice. In addition, specific knockout of endothelial JMJD3 delayed EC regeneration, enhanced endothelial mesenchymal transition, impaired endothelial barrier function as determined by increased Evans blue staining and inflammatory cell infiltration, and accelerated neointima formation in AVFs created by venous end to arterial side anastomosis in CKD mice. Mechanistically, JMJD3 expression was downregulated via binding of transforming growth factor beta 1-mediated Hes family transcription factor Hes1 to its gene promoter. Knockdown of JMJD3 enhanced H3K27 methylation, thereby inhibiting transcriptional activity at promoters of EC markers and reducing migration and proliferation of ECs. Furthermore, knockdown of endothelial JMJD3 decreased endothelial nitric oxide synthase expression and nitric oxide production, leading to the proliferation of vascular smooth muscle cells. In conclusion, we demonstrate that decreased expression of endothelial JMJD3 impairs EC regeneration and function and accelerates neointima formation in AVFs. We propose increasing the expression of endothelial JMJD3 could represent a new strategy for preventing endothelial dysfunction, attenuating NIH, and improving AVF patency in patients with kidney disease.


Asunto(s)
Fístula Arteriovenosa , Histona Demetilasas con Dominio de Jumonji/genética , Insuficiencia Renal Crónica , Animales , Fístula Arteriovenosa/genética , Fístula Arteriovenosa/patología , Regulación hacia Abajo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Hiperplasia/genética , Hiperplasia/patología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Neointima/genética
8.
BMC Microbiol ; 23(1): 338, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957579

RESUMEN

Ventilator-associated pneumonia (VAP) and pyogenic liver abscess (PLA) due to Klebsiella pneumoniae infection can trigger life-threatening malignant consequences, however, there are few studies on the strain-associated clinical pathogenic mechanisms between VAP and PLA. A total of 266 patients consist of 129 VAP and 137 PLA were included for analysis in this study. We conducted a comprehensive survey for the two groups of K. pneumoniae isolates, including phenotypic experiments, clinical epidemiology, genomic analysis, and instrumental analysis, i.e., to obtain the genomic differential profile of K. pneumoniae strains responsible for two distinct infection outcomes. We found that PLA group had a propensity for specific underlying diseases, especially diabetes and cholelithiasis. The resistance level of VAP was significantly higher than that of PLA (78.57% vs. 36%, P < 0.001), while the virulence results were opposite. There were also some differences in key signaling pathways of biochemical processes between the two groups. The combination of iucA, rmpA, hypermucoviscous phenotype, and ST23 presented in K. pneumoniae infection is more important and highly prudent for timely treatment. The present study may contribute a benchmark for the K. pneumoniae clinical screening, epidemiological surveillance, and effective therapeutic strategies.


Asunto(s)
Infecciones por Klebsiella , Absceso Hepático , Neumonía Asociada al Ventilador , Humanos , Klebsiella pneumoniae , Factores de Virulencia/genética , Tipificación de Secuencias Multilocus , Fenotipo , Infecciones por Klebsiella/epidemiología
9.
Plant Cell ; 32(8): 2639-2659, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32434855

RESUMEN

Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry. Putatively, KAR activates the receptor KARRIKIN INSENSITIVE2 (KAI2), triggering its association with the E3 ubiquitin ligase complex SCFMAX2 and downstream targets SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2). Polyubiquitination and proteolysis of SMAX1 and SMXL2 then enable growth responses to KAR. However, many of the assumptions of this model have not been demonstrated. Therefore, we investigated the posttranslational regulation of SMAX1 from the model plant Arabidopsis (Arabidopsis thaliana). We find evidence that SMAX1 is degraded by KAI2-SCFMAX2 but is also subject to MAX2-independent turnover. We identify SMAX1 domains that are responsible for its nuclear localization, KAR-induced degradation, association with KAI2, and ability to interact with other SMXL proteins. KAI2 undergoes MAX2-independent degradation after KAR treatment, which we propose results from its association with SMAX1 and SMXL2. Finally, we discover an SMXL domain that mediates receptor-target interaction preferences in KAR and SL signaling, laying the foundation for understanding how these highly similar pathways evolved to fulfill different roles.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Furanos/farmacología , Hidrolasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteolisis , Piranos/farmacología , Secuencias de Aminoácidos , Proteínas Portadoras/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Secuencia Conservada , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Hidrolasas/química , Lactonas/farmacología , Extractos Vegetales , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Eliminación de Secuencia , Relación Estructura-Actividad , Nicotiana/efectos de los fármacos
10.
Opt Lett ; 48(12): 3331-3334, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37319094

RESUMEN

Semiconductor lasers with delayed optical feedback are a promising source of optical chaos for practical applications, owing to simple configurations that are easy to integrate and synchronize. However, for traditional semiconductor lasers, the chaos bandwidth is limited by the relaxation frequency to several gigahertz. Here, we propose and experimentally demonstrate that a short-resonant-cavity distributed-feedback (SC-DFB) laser can generate broadband chaos only with simple feedback from an external mirror. The short distributed-feedback resonant cavity not only enhances laser relaxation frequency but also makes the laser mode more susceptible to external feedback. Experiments obtained a laser chaos with 33.6 GHz bandwidth and a spectral flatness of 4.5 dB. The corresponding entropy rate is estimated as more than 33.3 Gbit/s. It is believed that the SC-DFB lasers will promote development of chaos-based secure communication and physical key distribution.


Asunto(s)
Láseres de Semiconductores , Luz , Retroalimentación , Entropía , Diseño de Equipo
11.
BMC Psychiatry ; 23(1): 145, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890488

RESUMEN

BACKGROUND: Based on its objective characteristics, laboratory markers have always been the research direction of clinical diagnosis and assessment of mental disorders including Alzheimer's disease. METHODS: MTT Colorimetric Assay, ELISA, and quantitative PCR were used to investigate the responsiveness of peripheral blood mononuclear cells (PBMCs) to mitogen Lipopolysaccharides (LPS) and Phytohemagglutinin (PHA), PBMCs genomic methylation and hydroxymethylation levels, nuclear DNA and mitochondrial DNA damage, respiratory chain enzyme activities, and circulating cell-free mitochondrial DNA levels were detected in 90 patients with Alzheimer's disease. RESULTS: In the Alzheimer's disease group, LPS stimulated PBMCs viability, TNF-α secretion, PHA stimulated IL-10 secretion, genomic DNA methylation levels, circulating cell-free mitochondrial DNA copies, citrate synthase activity were reduced compared to the control; while the LPS stimulated PBMCs IL-1α secretion, PHA stimulated IL-1α and IFN-γ secretion, plasma IL-6 and TNF-α, mitochondrial DNA damages were increased compared to the control. CONCLUSIONS: The reactivity of peripheral blood mononuclear cells to mitogens, mitochondrial DNA integrity characteristics, and cell-free mitochondrial DNA copies may be used as candidate laboratory biomarkers to help clinical management of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Mitógenos , Humanos , Mitógenos/farmacología , Lipopolisacáridos , Leucocitos Mononucleares , Factor de Necrosis Tumoral alfa , Citocinas , ADN Mitocondrial , Enfermedad de Alzheimer/diagnóstico , Fitohemaglutininas/farmacología
12.
J Integr Plant Biol ; 65(7): 1636-1650, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36866859

RESUMEN

Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.


Asunto(s)
Sequías , Glycine max , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Zinc/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
BMC Genomics ; 23(1): 666, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36131238

RESUMEN

Severe peripheral nerve injury leads to the irreparable disruption of nerve fibers. This leads to disruption of synapses with the designated muscle, which consequently go through progressive atrophy and damage of muscle function. The molecular mechanism that underlies the re-innervation process has yet to be evaluated using proteomics or transcriptomics. In the present study, multi-dimensional data were therefore integrated with transcriptome and proteome profiles in order to investigate the mechanism of re-innervation in muscles. Two simulated nerve injury muscle models in the rat tibial nerve were compared: the nerve was either cut (denervated, DN group) or crushed but with the nerve sheath intact (re-innervated, RN group). The control group had a preserved and intact tibial nerve. At 4 weeks, the RN group showed better tibial nerve function and recovery of muscle atrophy compared to the DN group. As the high expression of Myh3, Postn, Col6a1 and Cfi, the RN group demonstrated superior re-innervation as well. Both differentially expressed genes (DEGs) and proteins (DEPs) were enriched in the peroxisome proliferator-activated receptors (PPARs) signaling pathway, as well as the energy metabolism. This study provides basic information regarding DEGs and DEPs during re-innervation-induced muscle atrophy. Furthermore, the crucial genes and proteins can be detected as possible treatment targets in the future.


Asunto(s)
Desnervación Muscular , Proteoma , Animales , Músculo Esquelético/fisiología , Atrofia Muscular/genética , Atrofia Muscular/patología , Compresión Nerviosa , Regeneración Nerviosa/fisiología , Receptores Activados del Proliferador del Peroxisoma , Ratas
14.
Lab Invest ; 102(5): 534-544, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35046485

RESUMEN

The mitochondrial intracrine Stanniocalcin 1 (STC1) activates mitochondrial anti-oxidant defenses. LRP2 (megalin) shuttles STC1 to the mitochondria through retrograde early endosome-to-Golgi- and Rab32-mediated pathway, and LRP2 KO impairs mitochondrial respiration and glycolysis. We determined STC1-LRP2 interaction domains using HA- and FLAG-tagged fragments of STC1 and LRP2, respectively, co-expressed in HEK293T cells. The trans-membrane domain of LRP2 is required for trafficking to the mitochondria. STC1-FLAG expressed in LRP2 KO cells fails to reach the mitochondria; thus, mitochondrial STC1 is extracellularly-derived via LRP2-mediated trafficking. Tri-leucines L12-14 in LRP2's signal peptide interact with STC1's signal peptide. Mutant LRP2 (L(12-14)A) does not bind STC1, while hSTC1 lacking signal peptide or Leucines L8/9/11 does not bind LRP2. STC1 fails to induce respiration or glycolysis in megalin KO mouse embryonal fibroblasts (MEF) expressing mutant LRP2, while mutant hSTC1 (L8/L9/L11 - > A8/A9/A11) fails to reach the mitochondria or induce respiration and glycolysis in WT MEF. Our data suggest direct regulation of mitochondrial metabolism by extracellular cues and reveal an important role for signal peptides' leucines in protein-protein interactions and mitochondrial biology.


Asunto(s)
Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Señales de Clasificación de Proteína , Animales , Glicoproteínas , Células HEK293 , Humanos , Leucina/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Mitocondrias/metabolismo
15.
BMC Nephrol ; 23(1): 76, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193514

RESUMEN

BACKGROUND: Escherichia coli peritonitis (EP) is a serious complication of peritoneal dialysis (PD). Gut microbiota alterations occur in end-stage renal disease (ESRD) patients. The relationship between the gut microbiota and PD-related peritonitis is still poorly understood. It is unclear whether the intestinal flora is involved in the pathogenesis of EP. METHODS: We collected fecal samples from EP patients and normal group (NG) PD patients. 16S rRNA sequencing was used to analyze the gut microbiota of EP and NG patients. The demographic data and clinical indicators of all patients were collected. RESULTS: Six EP patients and 28 NG patients were recruited for this study. The analysis of fecal community diversity with 16S rDNA sequencing showed an obvious change in the microbial structure of EP patients, where Bacteroidetes and Synergistetes were upregulated at different levels, while Bacilli and Lactobacillus were downregulated at different levels compared to the NG group. Additionally, decreased gene function associated with metabolic pathways was observed in EP patients. CONCLUSIONS: The altered composition of the gut microbiota in EP patients provided deeper insights into the pathogenesis of EP, and these biomarkers might be established as potential therapeutic targets that deserve further exploration.


Asunto(s)
Infecciones por Escherichia coli/etiología , Microbioma Gastrointestinal , Fallo Renal Crónico/terapia , Diálisis Peritoneal/efectos adversos , Peritonitis/microbiología , Adulto , Correlación de Datos , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Acta Biochim Biophys Sin (Shanghai) ; 54(11): 1740-1747, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36604139

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic airway infection in bronchiectasis patients and is closely associated with poor prognosis. Strains isolated from chronically infected patients typically have a mucoid phenotype due to the overproduction of alginate. In this study, we isolate a P. aeruginosa strain from the sputum of a patient with bronchiectasis and find that a truncated mutation occurred in mucA, which is named mucA117. mucA117 causes the strain to transform into a mucoid phenotype, downregulates the expression of T3SS and inflammasome ligands such as fliC and allows it to avoid inflammasome activation. The truncated mutation of the MucA protein may help P. aeruginosa escape clearance by the immune system, enabling long-term colonization.


Asunto(s)
Bronquiectasia , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Bronquiectasia/genética
17.
Genomics ; 113(1 Pt 2): 475-483, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956846

RESUMEN

Colitis induced by C. difficile is one of the most common and costly healthcare-related infections for humans. Probiotics are one of the most promising approaches for controlling CDI. Here, we presented the isolation, safety, and probiotic property evaluation of a novel E. thailandicus strain, d5B, with effective antimicrobial activity against C. difficile. Strain d5B showed strong bactericidal effects on at least 54C. difficile strains. Safety tests showed that strain d5B was sensitive to clinically important antibiotics, and had no haemolytic and cytotoxic activities. Whole genomic analysis showed strain d5B only contained one aminoglycoside resistance gene located in the chromosome. Moreover, d5B was devoid of functional virulence genes. Finally, strain d5B exhibited probiotic properties, such as tolerance to the gastrointestinal tract, and adhered well to HT-29 cells. In conclusion, the E. thailandicus strain d5B should be investigated further for useful properties as a novel candidate probiotic for controlling CDI.


Asunto(s)
Antibacterianos/biosíntesis , Clostridioides difficile/efectos de los fármacos , Enterococcus/metabolismo , Animales , Antibacterianos/toxicidad , Células Cultivadas , Chlorocebus aethiops , Enterococcus/genética , Células HT29 , Humanos , Células Vero
18.
Cent Eur J Immunol ; 47(1): 8-19, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600150

RESUMEN

Sepsis-induced acute kidney injury (AKI) is one of the important causes of increased mortality in sepsis patients. Long non-coding RNA (lncRNA) is believed to play a vital function in the progression of AKI. However, the mechanism of nuclear enriched abundant transcript 1 (NEAT1) has not been fully elucidated. NEAT1 was overexpressed and miR-22-3p was underexpressed in sepsis patients and lipopolysaccharide (LPS)-induced AKI cell models. Knockdown of NEAT1 could promote viability and suppress apoptosis and the inflammatory response in LPS-induced HK2 cells. MiR-22-3p could be sponged by NEAT1, and its inhibitor reversed the inhibition effect of NEAT1 silencing on LPS-induced HK2 cell injury. CXCL12 could be targeted by miR-22-3p, and its overexpression reversed the suppression effect of miR-22-3p on LPS-induced HK2 cell injury. Silenced NEAT1 could restrain the activity of the NF-κB signaling pathway, and miR-22-3p inhibitor or CXCL12 overexpression could reverse this effect. In addition, NEAT1 knockdown alleviated the inflammation response of cecal ligation and puncture (CLP) mouse models. In summary, our data showed that NEAT1 promoted LPS-induced HK2 cell injury via regulating the miR-22-3p/CXCL12/NF-κB signaling pathway, suggesting that NEAT1 knockdown might be a potential pathway for alleviating sepsis-induced AKI.

19.
New Phytol ; 231(2): 661-678, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33864683

RESUMEN

Soybean (Glycine max) is one of the most important oilseed crops. However, the regulatory mechanism that governs the process of oil accumulation in soybean remains poorly understood. In this study, GmZF392, a tandem CCCH zinc finger (TZF) protein which was identified in our previous RNA-seq analysis of seed-preferred transcription factors, was found to function as a positive regulator of lipid production. GmZF392 promotes seed oil accumulation in both transgenic Arabidopsis and stable transgenic soybean plants by binding to a bipartite cis-element, containing TG- and TA-rich sequences, in promoter regions, activating the expression of genes in the lipid biosynthesis pathway. GmZF392 physically interacts with GmZF351, our previously identified transcriptional regulator of lipid biosynthesis, to synergistically promote downstream gene expression. Both GmZF392 and GmZF351 are further upregulated by GmNFYA, another transcription factor involved in lipid biosynthesis, directly (in the former case) and indirectly (in the latter case). Promoter sequence diversity analysis showed that the GmZF392 promoter may have been selected at the origin of the Glycine genus and further mildly selected during domestication from wild soybeans to cultivated soybeans. Our study reveals a regulatory module containing three transcription factors in the lipid biosynthesis pathway, and manipulation of the module may improve oil production in soybean and other oilseed crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Lípidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Glycine max/genética , Glycine max/metabolismo
20.
J Integr Neurosci ; 20(2): 359-366, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34258934

RESUMEN

This preliminary research determines whether a combination of reverse end-to-side neurorrhaphy and rapamycin treatment achieves a better functional outcome than a single application after prolonged peripheral nerve injury. We found that the tibial nerve function of the reverse end-to-side + rapamycin group recovered better, with a higher tibial function index value, higher amplitude recovery rate, and shorter latency delay rate (P < 0.05). The reverse end-to-side + rapamycin group better protected the gastrocnemius muscle with more forceful contractility, tetanic tension, and a higher myofibril cross-sectional area (P < 0.05). Combining reverse end-to-side neurorrhaphy with rapamycin treatment is a practical approach to promoting the recovery of chronically denervated muscle atrophy after peripheral nerve injury.


Asunto(s)
Antibacterianos/farmacología , Músculo Esquelético/fisiopatología , Regeneración Nerviosa/fisiología , Procedimientos Neuroquirúrgicos , Traumatismos de los Nervios Periféricos/terapia , Sirolimus/farmacología , Neuropatía Tibial/terapia , Animales , Antibacterianos/administración & dosificación , Terapia Combinada , Modelos Animales de Enfermedad , Electromiografía , Femenino , Desnervación Muscular , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/cirugía , Ratas , Ratas Sprague-Dawley , Sirolimus/administración & dosificación , Neuropatía Tibial/tratamiento farmacológico , Neuropatía Tibial/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA