Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Carcinogenesis ; 44(8-9): 682-694, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-37294054

RESUMEN

EphB6 belongs to the receptor tyrosine kinase, whose low expression is associated with shorter survival of colorectal cancer (CRC) patients. But the role and mechanism of EphB6 in the progression of CRC need further study. In addition, EphB6 was mainly expressed in intestinal neurons. But how EphB6 is involved in functions of intestinal neurons has not been known. In our study, we constructed a mouse xenograft model of CRC by injecting CMT93 cells into the rectum of EphB6-deficient mice. We found that the deletion of EphB6 in mice promoted tumor growth of CMT93 cells in a xenograft model of CRC, which was independent of changes in the gut microbiota. Interestingly, inhibition of intestinal neurons by injecting botulinum toxin A into rectum of EphB6-deficient mice could eliminate the promotive effect of EphB6 deficiency on tumor growth in the xenograft model of CRC. Mechanically, the deletion of EphB6 in mice promoted the tumor growth in CRC by increasing GABA in the tumor microenvironment. Furthermore, EphB6 deficiency in mice increased the expression of synaptosomal-associated protein 25 in the intestinal myenteric plexus, which mediated the release of GABA. Our study concluded that EphB6 knockout in mice promotes tumor growth of CMT93 cells in a xenograft model of CRC by modulating GABA release. Our study found a new regulating mechanism of EphB6 on the tumor progression in CRC that is dependent on intestinal neurons.


Asunto(s)
Comunicación Celular , Neoplasias Colorrectales , Humanos , Animales , Ratones , Neoplasias Colorrectales/metabolismo , Intestinos/patología , Neuronas/metabolismo , Neuronas/patología , Ácido gamma-Aminobutírico , Microambiente Tumoral
2.
Mol Psychiatry ; 27(2): 873-885, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34642458

RESUMEN

Long-term potentiation (LTP) in the hippocampus is the most studied form of synaptic plasticity. Temporal integration of synaptic inputs is essential in synaptic plasticity and is assumed to be achieved through Ca2+ signaling in neurons and astroglia. However, whether these two cell types play different roles in LTP remain unknown. Here, we found that through the integration of synaptic inputs, astrocyte inositol triphosphate (IP3) receptor type 2 (IP3R2)-dependent Ca2+ signaling was critical for late-phase LTP (L-LTP) but not early-phase LTP (E-LTP). Moreover, this process was mediated by astrocyte-derived brain-derived neurotrophic factor (BDNF). In contrast, neuron-derived BDNF was critical for both E-LTP and L-LTP. Importantly, the dynamic differences in BDNF secretion play a role in modulating distinct forms of LTP. Moreover, astrocyte- and neuron-derived BDNF exhibited different roles in memory. These observations enriched our knowledge of LTP and memory at the cellular level and implied distinct roles of astrocytes and neurons in information integration.


Asunto(s)
Astrocitos , Factor Neurotrófico Derivado del Encéfalo , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo
3.
J Transl Med ; 20(1): 218, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562743

RESUMEN

BACKGROUND: Early diagnosis and treatment of chronic pancreatitis (CP) are limited. In this study, St13, a co-chaperone protein, was investigated whether it constituted a novel regulatory target in CP. Meanwhile, we evaluated the value of micro-PET/CT in the early diagnosis of CP. METHODS: Data from healthy control individuals and patients with alcoholic CP (ACP) or non-ACP (nACP) were analysed. PRSS1 transgenic mice (PRSS1Tg) were treated with ethanol or caerulein to mimic the development of ACP or nACP, respectively. Pancreatic lipid metabolite profiling was performed in human and PRSS1Tg model mice. The potential functions of St13 were investigated by crossing PRSS1Tg mice with St13-/- mice via immunoprecipitation and lipid metabolomics. Micro-PET/CT was performed to evaluate pancreatic morphology and fibrosis in CP model. RESULTS: The arachidonic acid (AA) pathway ranked the most commonly dysregulated lipid pathway in ACP and nACP in human and mice. Knockout of St13 exacerbated fatty replacement and fibrosis in CP model. Sdf2l1 was identified as a binding partner of St13 as it stabilizes the IRE1α-XBP1s signalling pathway, which regulates COX-2, an important component in AA metabolism. Micro-PET/CT with 68Ga-FAPI-04 was useful for evaluating pancreatic morphology and fibrosis in CP model mice 2 weeks after modelling. CONCLUSION: St13 is functionally activated in acinar cells and protects against the cellular characteristics of CP by binding Sdf2l1, regulating AA pathway. 68Ga-FAPI-04 PET/CT may be a very valuable approach for the early diagnosis of CP. These findings thus provide novel insights into both diagnosis and treatment of CP.


Asunto(s)
Células Acinares , Endorribonucleasas , Animales , Humanos , Ratones , Células Acinares/metabolismo , Ácido Araquidónico/metabolismo , Proteínas Portadoras/metabolismo , Endorribonucleasas/metabolismo , Fibrosis , Radioisótopos de Galio , Ratones Noqueados , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteínas Serina-Treonina Quinasas , Tripsina/metabolismo , Proteínas Supresoras de Tumor/metabolismo
4.
Med Sci Monit ; 23: 4334-4342, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28885995

RESUMEN

BACKGROUND Glucagon-like peptide-1 (GLP-1) has been reported to exert some beneficial effects on the central nervous system (CNS). However, the effect of GLP-1 on cognitive impairment associated with type 2 diabetes is not well known. This study investigated the effect of GLP-1 on ameliorating memory deficits in type 2 diabetic rats. MATERIAL AND METHODS Type 2 diabetic rats were induced by a high-sugar, high-fat diet, followed by streptozotocin (STZ) injection and then tested in the Morris Water Maze (MWM) 1 week after the induction of diabetes. The mRNA expression of Arc, APP, BACE1, and PS1 were determined by real-time quantitative PCR, and the Arc protein was analyzed by immunoblotting and immunohistochemistry. RESULTS Type 2 diabetic rats exhibited a significant decline in learning and memory in the MWM tests, but GLP-1 treatment was able to protect this decline and significantly improved learning ability and memory. The mRNA expression assays showed that GLP-1 treatment markedly reduced Arc, APP, BACE1, and PS1 expressions, which were elevated in the diabetic rats. Immunoblotting and immunohistochemistry results also confirmed that Arc protein increased in the hippocampus of diabetic rats, but was reduced after GLP-1 treatment. CONCLUSIONS Our findings suggest that GLP-1 treatment improves learning and memory deficits in type 2 diabetic rats, and this effect is likely through the reduction of Arc expression in the hippocampus.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Animales , Glucemia/metabolismo , Disfunción Cognitiva/sangre , Disfunción Cognitiva/metabolismo , Proteínas del Citoesqueleto/metabolismo , Diabetes Mellitus Tipo 2/sangre , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/complicaciones , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Sprague-Dawley
5.
Stem Cells ; 31(8): 1633-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23630193

RESUMEN

Astrocytes are key components of the niche for neural stem cells (NSCs) in the adult hippocampus and play a vital role in regulating NSC proliferation and differentiation. However, the exact molecular mechanisms by which astrocytes modulate NSC proliferation have not been identified. Here, we identified adenosine 5'-triphosphate (ATP) as a proliferative factor required for astrocyte-mediated proliferation of NSCs in the adult hippocampus. Our results indicate that ATP is necessary and sufficient for astrocytes to promote NSC proliferation in vitro. The lack of inositol 1,4,5-trisphosphate receptor type 2 and transgenic blockage of vesicular gliotransmission induced deficient ATP release from astrocytes. This deficiency led to a dysfunction in NSC proliferation that could be rescued via the administration of exogenous ATP. Moreover, P2Y1-mediated purinergic signaling is involved in the astrocyte promotion of NSC proliferation. As adult hippocampal neurogenesis is potentially involved in major mood disorder, our results might offer mechanistic insights into this disease.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Animales , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis , Transducción de Señal
6.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773146

RESUMEN

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Astrocitos , Trastorno Depresivo Mayor , Ratones Noqueados , Animales , Astrocitos/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Ratones , Humanos , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Masculino , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neuronas/metabolismo , Estrés Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Conducta Animal , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Depresión/metabolismo , Depresión/genética , Adulto , Transmisión Sináptica , Persona de Mediana Edad
7.
Neurochem Res ; 38(10): 2216-26, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23974726

RESUMEN

The destruction of calcium homeostasis is an important factor leading to neurological diseases. Store-operated Ca(2+) (SOC) channels are essential for Ca(2+) homeostasis in many cell types. However, whether SOC channels are involved in astrocyte activation induced by lipopolysaccharide (LPS) still remains unknown. In this study, we used LPS as an exogenous stimulation to investigate the role of SOC channels in astrocyte activation. Using calcium imaging technology, we first found that SOC channels blockers, 1-[h-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365) and 2-aminoethyldiphenyl borate (2-APB), inhibited LPS induced [Ca(2+)]i increase, which prompted us to speculate that SOC channels may be involved in LPS induced astrocyte activation. Further experiments confirmed our speculation shown as SOC channels blockers inhibited LPS induced astrocyte activation characterized as cell proliferation by MTS and BrdU assay, raise in glial fibrillary acidic protein expression by immunofluorescence and Western Blot and secretion of interleukin 6 (IL-6) and interleukin 1ß (IL-1ß) by ELISA. So, our studies showed that SOC channels are involved in LPS-induced astrocyte activation.


Asunto(s)
Astrocitos/fisiología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/fisiología , Imidazoles/farmacología , Lipopolisacáridos/farmacología , Animales , Astrocitos/efectos de los fármacos , Compuestos de Boro/farmacología , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Proteína Ácida Fibrilar de la Glía/biosíntesis , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratas , Ratas Wistar
8.
Acta Pharmacol Sin ; 34(12): 1491-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24304919

RESUMEN

AIM: Aptamers are oligonucleic acid or peptide molecules that bind to a specific target molecule in cells, thus may act as effective vehicles for drug or siRNA delivery. In this study we investigated the DNA aptamers that target human glioblastoma multiforme (GBM) cells overexpressing epidermal growth factor receptor variant III (EGFRvIII), which was linked to radiation and chemotherapeutic resistance of this most aggressive brain tumor. METHODS: A 73-mer ssDNA library containing molecules with 30 nt of random sequence flanked by two primer hybridization sites was chosen as the initial library. Cell systematic evolution of ligands by exponential enrichment (Cell-SELEX) method was used to select the DNA aptamers that target EGFRvIII. The binding affinity of the aptamers was measured using a cell-based biotin-avidin ELISA. RESULTS: After 14 rounds of selection, four DNA aptamers (32, 41, 43, and 47) that specifically bound to the EGFRvIII-overexpressing human glioma U87Δ cells with Kd values of less than 100 nmol/L were discovered. These aptamers were able to distinguish the U87Δ cells from the negative control human glioma U87MG cells and HEK293 cells. Aptamer 32 specifically bound to the EGFRvIII protein with an affinity similar to the EGFR antibody (Kd values of aptamer 32 and the EGFR antibody were 0.62±0.04 and 0.32±0.01 nmol/L, respectively), and this aptamer was localized in the cell nucleus. CONCLUSION: The DNA aptamers are promising molecular probes for the diagnosis and treatment of GBM.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Neoplasias Encefálicas/patología , Receptores ErbB/metabolismo , Glioblastoma/patología , Secuencia de Bases , Western Blotting , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Cartilla de ADN , Citometría de Flujo , Glioblastoma/metabolismo , Humanos , Sondas Moleculares , Técnica SELEX de Producción de Aptámeros
9.
Proc Natl Acad Sci U S A ; 107(50): 21818-23, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21106764

RESUMEN

Neuregulin 1 (NRG1) is a trophic factor that acts by stimulating ErbB receptor tyrosine kinases and has been implicated in neural development and synaptic plasticity. In this study, we investigated mechanisms of its suppression of long-term potentiation (LTP) in the hippocampus. We found that NRG1 did not alter glutamatergic transmission at SC-CA1 synapses but increased the GABA(A) receptor-mediated synaptic currents in CA1 pyramidal cells via a presynaptic mechanism. Inhibition of GABA(A) receptors blocked the suppressing effect of NRG1 on LTP and prevented ecto-ErbB4 from enhancing LTP, implicating a role of GABAergic transmission. To test this hypothesis further, we generated parvalbumin (PV)-Cre;ErbB4(-/-) mice in which ErbB4, an NRG1 receptor in the brain, is ablated specifically in PV-positive interneurons. NRG1 was no longer able to increase inhibitory postsynaptic currents and to suppress LTP in PV-Cre;ErbB4(-/-) hippocampus. Accordingly, contextual fear conditioning, a hippocampus-dependent test, was impaired in PV-Cre;ErbB4(-/-) mice. In contrast, ablation of ErbB4 in pyramidal neurons had no effect on NRG1 regulation of hippocampal LTP or contextual fear conditioning. These results demonstrate a critical role of ErbB4 in PV-positive interneurons but not in pyramidal neurons in synaptic plasticity and support a working model that NRG1 suppresses LTP by enhancing GABA release. Considering that NRG1 and ErbB4 are susceptibility genes of schizophrenia, these observations contribute to a better understanding of how abnormal NRG1/ErbB4 signaling may be involved in the pathogenesis of schizophrenia.


Asunto(s)
Receptores ErbB/metabolismo , Interneuronas/metabolismo , Potenciación a Largo Plazo/fisiología , Neurregulina-1/metabolismo , Parvalbúminas/metabolismo , Animales , Condicionamiento Psicológico , Receptores ErbB/genética , Miedo , Antagonistas de Receptores de GABA-A/farmacología , Hipocampo/citología , Hipocampo/metabolismo , Interneuronas/citología , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Ratones Noqueados , Neurregulina-1/genética , Receptor ErbB-4 , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Neuropsychopharmacology ; 48(8): 1164-1174, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36797374

RESUMEN

Pharmacological manipulation of mGluR5 has showed that mGluR5 is implicated in the pathophysiology of anxiety and mGluR5 has been proposed as a potential drug target for anxiety disorders. Nevertheless, the mechanism underlying the mGluR5 involvement in stress-induced anxiety-like behavior remains largely unknown. Here, we found that chronic restraint stress induced anxiety-like behavior and decreased the expression of mGluR5 in hippocampal CA1. Specific knockdown of mGluR5 in hippocampal CA1 pyramidal neurons produced anxiety-like behavior. Furthermore, both chronic restraint stress and mGluR5 knockdown impaired inhibitory synaptic inputs in hippocampal CA1 pyramidal neurons. Notably, positive allosteric modulator of mGluR5 rescued stress-induced anxiety-like behavior and restored the inhibitory synaptic inputs. These findings point to an essential role for mGluR5 in hippocampal CA1 pyramidal neurons in mediating stress-induced anxiety-like behavior.


Asunto(s)
Hipocampo , Células Piramidales , Hipocampo/metabolismo , Células Piramidales/fisiología , Ansiedad/tratamiento farmacológico , Región CA1 Hipocampal
11.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36757814

RESUMEN

Major depressive disorder is a common and devastating psychiatric disease, and the prevalence and burden are substantially increasing worldwide. Multiple studies of depression patients have implicated glucose metabolic dysfunction in the pathophysiology of depression. However, the molecular mechanisms by which glucose and related metabolic pathways modulate depressive-like behaviors are largely uncharacterized. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is a glucose metabolite with pivotal functions as a donor molecule for O-GlcNAcylation. O-GlcNAc transferase (OGT), a key enzyme in protein O-GlcNAcylation, catalyzes protein posttranslational modification by O-GlcNAc and acts as a stress sensor. Here, we show that Ogt mRNA was increased in depression patients and that astroglial OGT expression was specifically upregulated in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social-defeat stress. The selective deletion of astrocytic OGT resulted in antidepressant-like effects, and moreover, astrocytic OGT in the mPFC bidirectionally regulated vulnerability to social stress. Furthermore, OGT modulated glutamatergic synaptic transmission through O-GlcNAcylation of glutamate transporter-1 (GLT-1) in astrocytes. OGT astrocyte-specific knockout preserved the neuronal morphology atrophy and Ca2+ activity deficits caused by chronic stress and resulted in antidepressant effects. Our study reveals that astrocytic OGT in the mPFC regulates depressive-like behaviors through the O-GlcNAcylation of GLT-1 and could be a potential target for antidepressants.


Asunto(s)
Astrocitos , Trastorno Depresivo Mayor , Ratones , Animales , Astrocitos/metabolismo , Depresión/genética , Transmisión Sináptica , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Antidepresivos , Glucosa , Acetilglucosamina/metabolismo
12.
Theranostics ; 12(8): 3703-3718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664080

RESUMEN

Rationale: Stress is a major risk factor for the development of depression. However, the underlying molecular mechanisms of stress vulnerability in depression are largely uncharacterized. Methods: P2X2 receptors (a major receptor for gliotransmitter-ATP) in the medial prefrontal cortex (mPFC) were identified by real-time qPCR, western blots and RNAscope in situ hybridization in chronic social defeat stress model (CSDS). We generated P2X2 conditional knockout mice and overexpressed AAV-P2X2 in CamkIIα-Cre mice. The depression-like behaviors were assessed via CSDS, subthreshold social defeat stress (SSDS), social interaction test (SI), forced interaction test (FIT), forced swimming test (FST), sucrose preference test (SPT), novel stressed feeding (NSF) and open field test (OFT). The neuronal activity and synapse function of P2X2 receptors in the mPFC were detected by in vivo fiber-photometry, patch-clamp techniques and neuronal morphometric analysis. Results: We identified that P2X2 receptors were increased in the mPFC of susceptible mice in CSDS. Conditional knockout of P2X2 receptors in pyramidal neurons promoted resilience of chronic stress-induced depressive-like behaviors, whereas pyramidal neurons - specific gain of P2X2 in the mPFC increased vulnerability to depressive-like behaviors. In vivo fiber-photometry, electrophysiology and neuronal morphometric analysis showed P2X2 receptors regulated neuronal activity and synapse function in the mPFC. Conclusions: Overall, our studies reveal a critical role of P2X2 in mediating vulnerability to chronic stress and identify P2X2 as a potential therapeutic target for treatment of stress-related mood disorders.


Asunto(s)
Células Piramidales , Estrés Psicológico , Animales , Ratones , Ratones Endogámicos C57BL , Neuronas , Receptores Purinérgicos P2X2
13.
Biol Psychiatry ; 92(3): 204-215, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151464

RESUMEN

BACKGROUND: Major depressive disorder is a devastating psychiatric illness that affects approximately 17% of the population worldwide. Astrocyte dysfunction has been implicated in its pathophysiology. Traumatic experiences and stress contribute to the onset of major depressive disorder, but how astrocytes respond to stress is poorly understood. METHODS: Using Western blotting analysis, we identified that stress vulnerability was associated with reduced astrocytic glucocorticoid receptor (GR) expression in mouse models of depression. We further investigated the functions of astrocytic GRs in regulating depression and the underlying mechanisms by using a combination of behavioral studies, fiber photometry, biochemical experiments, and RNA sequencing methods. RESULTS: GRs in astrocytes were more sensitive to stress than those in neurons. GR absence in astrocytes induced depressive-like behaviors, whereas restoring astrocytic GR expression in the medial prefrontal cortex prevented the depressive-like phenotype. Furthermore, we found that GRs in the medial prefrontal cortex affected astrocytic Ca2+ activity and dynamic ATP (adenosine 5'-triphosphate) release in response to stress. RNA sequencing of astrocytes isolated from GR deletion mice identified the PI3K-Akt (phosphoinositide 3-kinase-Akt) signaling pathway, which was required for astrocytic GR-mediated ATP release. CONCLUSIONS: These findings reveal that astrocytic GRs play an important role in stress response and that reduced astrocytic GR expression in the stressed subject decreases ATP release to mediate stress vulnerability.


Asunto(s)
Astrocitos , Trastorno Depresivo Mayor , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Trastorno Depresivo Mayor/metabolismo , Glucocorticoides/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Glucocorticoides/metabolismo
14.
Cell Death Dis ; 13(10): 893, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273194

RESUMEN

Noninflammatory clearance of dying cells by professional phagocytes, termed efferocytosis, is fundamental in both homeostasis and inflammatory fibrosis disease but has not been confirmed to occur in chronic pancreatitis (CP). Here, we investigated whether efferocytosis constitutes a novel regulatory target in CP and its mechanisms. PRSS1 transgenic (PRSS1Tg) mice were treated with caerulein to mimic CP development. Phospholipid metabolite profiling and epigenetic assays were performed with PRSS1Tg CP models. The potential functions of Atp8b1 in CP model were clarified using Atp8b1-overexpressing adeno-associated virus, immunofluorescence, enzyme-linked immunosorbent assay(ELISA), and lipid metabolomic approaches. ATAC-seq combined with RNA-seq was then used to identify transcription factors binding to the Atp8b1 promoter, and ChIP-qPCR and luciferase assays were used to confirm that the identified transcription factor bound to the Atp8b1 promoter, and to identify the specific binding site. Flow cytometry was performed to analyze the proportion of pancreatic macrophages. Decreased efferocytosis with aggravated inflammation was identified in CP. The lysophosphatidylcholine (LPC) pathway was the most obviously dysregulated phospholipid pathway, and LPC and Atp8b1 expression gradually decreased during CP development. H3K27me3 ChIP-seq showed that increased Atp8b1 promoter methylation led to transcriptional inhibition. Atp8b1 complementation substantially increased the LPC concentration and improved CP outcomes. Bhlha15 was identified as a transcription factor that binds to the Atp8b1 promoter and regulates phospholipid metabolism. Our study indicates that the acinar Atp8b1/LPC pathway acts as an important "find-me" signal for macrophages and plays a protective role in CP, with Atp8b1 transcription promoted by the acinar cell-specific transcription factor Bhlha15. Bhlha15, Atp8b1, and LPC could be clinically translated into valuable therapeutic targets to overcome the limitations of current CP therapies.


Asunto(s)
Adenosina Trifosfatasas , Lisofosfatidilcolinas , Macrófagos , Pancreatitis Crónica , Animales , Ratones , Células Acinares/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Ceruletida/toxicidad , Histonas/metabolismo , Inflamación/metabolismo , Lisofosfatidilcolinas/genética , Lisofosfatidilcolinas/metabolismo , Macrófagos/metabolismo , Pancreatitis Crónica/inducido químicamente , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Factores de Transcripción/metabolismo
15.
J Neurosci ; 30(38): 12653-63, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-20861371

RESUMEN

Increasing evidence indicates that stimulating hippocampal neurogenesis could provide novel avenues for the treatment of depression, and recent studies have shown that in vitro neurogenesis is enhanced by hypoxia. The aim of this study was to investigate the potential regulatory capacity of an intermittent hypobaric hypoxia (IH) regimen on hippocampal neurogenesis and its possible antidepressant-like effect. Here, we show that IH promotes the proliferation of endogenous neuroprogenitors leading to more newborn neurons in hippocampus in adult rats. Importantly, IH produces antidepressant-like effects in multiple animal models screening for antidepressant activity, including the forced swimming test, chronic mild stress paradigm, and novelty-suppressed feeding test. Hippocampal x-ray irradiation blocked both the neurogenic and behavioral effects of IH, indicating that IH likely produces antidepressant-like effects via promoting neurogenesis in adult hippocampus. Furthermore, IH stably enhanced the expression of BDNF in hippocampus; both the antidepressant-like effect and the enhancement of cell proliferation induced by IH were totally blocked by pharmacological and biological inhibition of BDNF-TrkB (tyrosine receptor kinase B) signaling, suggesting that the neurogenic and antidepressant-like effects of IH may involve BDNF signaling. These observations might contribute to both a better understanding of physiological responses to IH and to developing IH as a novel therapeutic approach for depression.


Asunto(s)
Hipocampo/fisiología , Hipoxia/metabolismo , Actividad Motora/fisiología , Neurogénesis/fisiología , Análisis de Varianza , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Masculino , Actividad Motora/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología , Estrés Psicológico/metabolismo
16.
Neurosci Bull ; 37(1): 1-14, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32785834

RESUMEN

Every organism inevitably experiences stress. In the face of acute, intense stress, for example, periods of passivity occur when an organism's actions fail to overcome the challenge. The occurrence of inactive behavior may indicate that struggling would most likely be fruitless. Repeated serious stress has been associated with mood disorders such as depression. The modulation of passive coping response patterns has been explored with a focus on the circuit level. However, the cellular and molecular mechanisms are largely uncharacterized. Here, we report that lactate is a key factor in the astrocytic modulation of the passive coping response to behavioral challenge in adult mice. We found increased extracellular lactate in the medial prefrontal cortex (mPFC) when mice experienced the forced swimming test (FST). Furthermore, we discovered that disturbing astrocytic glycogenolysis, which is a key step for lactate production in the mPFC, decreased the duration of immobility in the FST. Knocking down monocarboxylate transporter 4 (MCT4), which is expressed exclusively in astrocytes and transports lactate from astrocytes to the extracellular space, caused similar results in the FST. The behavioral effect of both the pharmacological disturbance of astrocytic glycogenolysis and viral disruption of MCT4 expression was rescued via the administration of L-lactate. Moreover, we found that both pharmacological and viral modulation of astrocyte-derived lactate in mPFC slices increased the excitability of layer V pyramidal neurons, and this enhancement was reversed by exogenous L-lactate administration. These results highlight astrocyte-derived lactate as a biological mechanism underlying the passive coping response to behavioral challenge and may provide new strategies to prevent mood disorders.


Asunto(s)
Astrocitos , Ácido Láctico , Adaptación Psicológica , Animales , Masculino , Ratones , Corteza Prefrontal , Estrés Psicológico
17.
Nat Commun ; 12(1): 3321, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059669

RESUMEN

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. The mechanisms underlying ASD are unclear. Astrocyte alterations are noted in ASD patients and animal models. However, whether astrocyte dysfunction is causal or consequential to ASD-like phenotypes in mice is unresolved. Type 2 inositol 1,4,5-trisphosphate 6 receptors (IP3R2)-mediated Ca2+ release from intracellular Ca2+ stores results in the activation of astrocytes. Mutations of the IP3R2 gene are associated with ASD. Here, we show that both IP3R2-null mutant mice and astrocyte-specific IP3R2 conditional knockout mice display ASD-like behaviors, such as atypical social interaction and repetitive behavior. Furthermore, we show that astrocyte-derived ATP modulates ASD-like behavior through the P2X2 receptors in the prefrontal cortex and possibly through GABAergic synaptic transmission. These findings identify astrocyte-derived ATP as a potential molecular player in the pathophysiology of ASD.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/patología , Trastorno del Espectro Autista/patología , Señalización del Calcio/fisiología , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Conducta Animal , Calcio/metabolismo , Modelos Animales de Enfermedad , Neuronas GABAérgicas/fisiología , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Ratones , Ratones Noqueados , Corteza Prefrontal/citología , Corteza Prefrontal/patología , Corteza Prefrontal/fisiopatología , Transmisión Sináptica/fisiología
18.
Int J Neuropsychopharmacol ; 13(5): 623-33, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19796446

RESUMEN

Current antidepressants are clinically effective only after several weeks of administration. We show that Fuzi polysaccharide-1 (FPS), a new water-soluble polysaccharide isolated from Fuzi, which has been used to treat mood disorders in traditional Chinese medicine for centuries, increases the number of newborn cells in the dentate gyrus in adult mice, and most of these cells subsequently differentiate into new neurons. We also found that FPS administration reduces immobility in the forced swim test, and latency in the novelty suppressed-feeding test. Moreover, a 14-d regimen with FPS reverses avoidance behaviour and inhibition of hippocampal neurogenesis induced by chronic defeat stress. In contrast, imipramine, a well known antidepressant, reverses this avoidance behaviour only after 4 wk of continuous administration. Finally, acute treatment with FPS had no effect on brain monoamine levels in frontal cortex but significantly increases BDNF in the hippocampus, while the antidepressant effect and enhancement of cell proliferation induced by FPS administration were totally blocked by K252a, an inhibitor of trkB in a chronic social defeat depression model, suggesting that the neurogenic and antidepressant effects of FPS may involve BDNF signalling. In conclusion, our findings suggest that FPS could be developed as a putative antidepressant with a rapid onset of action.


Asunto(s)
Aconitum , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Glucanos/uso terapéutico , Raíces de Plantas , Animales , Antidepresivos/aislamiento & purificación , Antidepresivos/farmacología , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Depresión/patología , Depresión/psicología , Glucanos/aislamiento & purificación , Glucanos/farmacología , Masculino , Medicina Tradicional China/métodos , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Distribución Aleatoria
19.
Neurosci Bull ; 36(7): 705-718, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32166647

RESUMEN

Major depressive disorder (MDD) is a common mood disorder that affects almost 20% of the global population. In addition, much evidence has implicated altered function of the gamma-aminobutyric acid (GABAergic) system in the pathophysiology of depression. Recent research has indicated that GABAB receptors (GABABRs) are an emerging therapeutic target in the treatment of stress-related disorders such as MDD. However, which cell types with GABABRs are involved in this process is unknown. As hippocampal dysfunction is implicated in MDD, we knocked down GABABRs in the hippocampus and found that knocking down these receptors in astrocytes, but not in GABAergic or pyramidal neurons, caused a decrease in immobility in the forced swimming test (FST) without affecting other anxiety- and depression-related behaviors. We also generated astrocyte-specific GABABR-knockout mice and found decreased immobility in the FST in these mice. Furthermore, the conditional knockout of GABABRs in astrocytes selectively increased the levels of brain-derived neurotrophic factor protein in hippocampal astrocytes, which controlled the decrease in immobility in the FST. Taken together, our findings contribute to the current understanding of which cell types expressing GABABRs modulate antidepressant activity in the FST, and they may provide new insights into the pathological mechanisms and potential targets for the treatment of depression.


Asunto(s)
Astrocitos , Factor Neurotrófico Derivado del Encéfalo , Trastorno Depresivo Mayor , Hipocampo , Receptores de GABA-B , Animales , Ansiedad , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de GABA-B/metabolismo
20.
Genes Brain Behav ; 19(4): e12620, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31652391

RESUMEN

The CreERT2 recombinase system is an advanced method to temporally control site-specific mutagenesis in adult rodents. In this process, tamoxifen is injected to induce Cre recombinase expression, and then, Cre recombinase can excise LoxP-flanked DNA. However, tamoxifen is a nonselective estrogen receptor antagonist that may influence behavioral alterations. Therefore, we designed five different protocols (acute effects, chronic effects, chronic effects after social defeat model, chronic effects after learned helplessness model, chronic effects after isolation models) to explore whether tamoxifen affects mouse behavior. Researching the acute/chronic effects of tamoxifen, we found that tamoxifen could influence locomotor activity, anxiety and immobility time in the forced swimming test. Researching the chronic effects of tamoxifen after social defeat/learned helplessness/isolation models, we found that tamoxifen could also influence locomotor activity, social interaction and anxiety. Therefore, the effects of tamoxifen are more complex than previously reported. Our results show, for the first time, that tamoxifen affects behavior in mouse models. Meanwhile, we compare the effects of tamoxifen in different protocols. These results will provide important information when designing similar experiments.


Asunto(s)
Ansiedad/etiología , Tamoxifeno/farmacología , Animales , Marcación de Gen/métodos , Marcación de Gen/normas , Desamparo Adquirido , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptores de Estrógenos/antagonistas & inhibidores , Conducta Social , Tamoxifeno/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA