Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Nanobiotechnology ; 21(1): 49, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759822

RESUMEN

Aggregation-induced emission luminogens (AIEgens) have emerged as novel phototherapeutic agents with high photostability and excellent performance to induce photodynamic and/or photothermal effects. In this study, a zwitterion-type NIR AIEgens C41H37N2O3S2 (named BITT) with biomimetic modification was utilized for lung cancer therapy. The tumor-associated macrophage (TAM)-specific peptide (CRV) was engineered into the lung cancer cell-derived exosomes. The CRV-engineered exosome membranes (CRV-EM) were obtained to camouflage the BITT nanoparticles (CEB), which targeted both lung cancer cells and TAMs through homotypic targeting and TAM-specific peptide, respectively. The camouflage with CRV-EM ameliorated the surface function of BITT nanoparticles, which facilitated the cellular uptake in both cell lines and induced significant cell death in the presence of laser irradiations in vitro and in vivo. CEB showed improved circulation lifetime and accumulations in the tumor tissues in vivo, which induced efficient photodynamic and photothermal therapy. In addition, CEB induced the tumor microenvironment remodeling as indicated by the increase of CD8 + and CD4 + T cells, as well as a decrease of M2 TAM and Myeloid-derived suppressor cells (MDSCs). Our work developed a novel style of bioinspired AIE aggregates, which could eliminate both lung cancer cells and TAMs, and remodel the tumor environments to achieve an efficient lung cancer therapy. To the best of our knowledge, we are the first to use this style of bioinspired AIE aggregates for photo-mediated immunotherapy in lung cancer therapy.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Humanos , Neoplasias Pulmonares/terapia , Inmunoterapia , Péptidos , Microambiente Tumoral
2.
Angew Chem Int Ed Engl ; 62(11): e202217089, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36658634

RESUMEN

The reprogramming of tumor-associated macrophages (TAMs) has emerged as an efficient strategy for immunotherapy. However, most of the approaches did not allow the in situ reprogramming of TAM because their low efficiency, non-specificity, or potential side effects. Herein, we produced exosomes with the clustered regularly interspaced short palindromic repeats interference (CRISPRi) internally engineered and the TAM specific peptide externally engineered onto the exosome membrane. The internally and externally engineered exosomes (IEEE, also named as I3E) allowed the selective homing to tumor tissue and targeted to M2-like TAMs, which nearly repressed the expression of PI-3 kinase gamma (PI3Kγ) completely, and induced the TAMs polarizing to M1 both in vitro and in vivo. The polarized M1 macrophages awakened the "hot" tumor-immunity, causing the increase of T lymphocyte infiltration and the decrease of myeloid-derived suppressor cells, and inhibiting the tumor growth significantly. I3E reprogramed TAMs in situ precisely and efficiently.


Asunto(s)
Exosomas , Neoplasias , Humanos , Macrófagos Asociados a Tumores , Exosomas/metabolismo , Macrófagos/metabolismo , Neoplasias/patología , Microambiente Tumoral , Línea Celular Tumoral
3.
Acta Pharmacol Sin ; 43(11): 2946-2955, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35388129

RESUMEN

Lung adenocarcinoma (LUAD) characterized by high metastasis and mortality is the leading subtype of non-small cell lung cancer. Evidence shows that some microRNAs (miRNAs) may act as oncogenes or tumor suppressor genes, leading to malignant tumor occurrence and progression. To better understand the molecular mechanism associated with miRNA methylation in LUAD progression and clinical outcomes, we investigated the correlation between miR-148a-3p methylation and the clinical features of LUAD. In the LUAD cell lines and tumor tissues from patients, miR-148a-3p was found to be significantly downregulated, while the methylation of miR-148a-3p promoter was notably increased. Importantly, miR-148a-3p hypermethylation was closely associated with lymph node metastasis. We demonstrated that mitogen-activated protein (MAP) kinase kinase kinase 9 (MAP3K9) was the target of miR-148a-3p and that MAP3K9 levels were significantly increased in both LUAD cell lines and clinical tumor tissues. In A549 and NCI-H1299 cells, overexpression of miR-148a-3p or silencing MAP3K9 significantly inhibited cell growth, migration, invasion and cytoskeleton reorganization accompanied by suppressing the epithelial-mesenchymal transition. In a nude mouse xenograft assay we found that tumor growth was effectively inhibited by miR-148a-3p overexpression. Taken together, the promoter methylation-associated decrease in miR-148a-3p could lead to lung cancer metastasis by targeting MAP3K9. This study suggests that miR-148a-3p and MAP3K9 may act as novel therapeutic targets for the treatment of LUAD and have potential clinical applications.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinasas Quinasa Quinasa PAM , MicroARNs , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Metilación , MicroARNs/genética , MicroARNs/metabolismo
4.
J Nanobiotechnology ; 20(1): 335, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842662

RESUMEN

BACKGROUND: Cytomegalovirus (CMV) pneumonia is a major cause of morbidity and mortality in immunodeficiency individuals, including transplant recipients and Acquired Immune Deficiency Syndrome patients. Antiviral drugs ganciclovir (GCV) and phosphonoformate (PFA) are first-line agents for pneumonia caused by herpesvirus infection. However, the therapy suffers from various limitations such as low efficiency, drug resistance, toxicity, and lack of specificity. METHODS: The antiviral drugs GCV and PFA were loaded into the pH-responsive nanoparticles fabricated by poly(lactic-co-glycolic acid) (PLGA) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and further coated with cell membranes derived from bone marrow mesenchymal stem cells to form artificial stem cells, namely MPDGP. We evaluated the viral suppression effects of MPDGP in vitro and in vivo. RESULTS: MPDGP showed significant inflammation tropism and efficient suppression of viral replication and virus infection-associated inflammation in the CMV-induced pneumonia model. The synergistic effects of the combination of viral DNA elongation inhibitor GCV and viral DNA polymerase inhibitor PFA on suppressing the inflammation efficiently. CONCLUSION: The present study develops a novel therapeutic intervention using artificial stem cells to deliver antiviral drugs at inflammatory sites, which shows great potential for the targeted treatment of pneumonia. To our best knowledge, we are the first to fabricate this kind of artificial stem cell to deliver antiviral drugs for pneumonia treatment.


Asunto(s)
Antivirales , Sistema de Administración de Fármacos con Nanopartículas , Neumonía/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Citomegalovirus , Infecciones por Citomegalovirus/tratamiento farmacológico , Ácidos Grasos Monoinsaturados/química , Foscarnet/farmacología , Foscarnet/uso terapéutico , Ganciclovir/farmacología , Ganciclovir/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Compuestos de Amonio Cuaternario/química , Células Madre
5.
Pharmacol Res ; 171: 105787, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34314859

RESUMEN

We adopted a novel strategy by combining histone deacetylase (HDAC) inhibitors with traditional chemotherapeutics to treat solid tumors. However, chemotherapeutics often have a narrow therapeutic index and need multiple administrations with undesired side effects that lead to the intolerance. To reduce the non-specificity of chemotherapeutics, targeted therapy was introduced to restrict such agents in the tumor with minimum effects on other tissues. We developed bioinspired artificial exosomes (AE), which enabled to deliver chemotherapeutics to the tumors effectively after systemic administration. AE were produced by incorporating membrane proteins from cancer cells into phospholipid liposomes that mimicked the plasma membrane. The synthesized AE were used for the delivery of broad-spectrum chemotherapeutic doxorubicin (DOX) and vorinostat (SAHA), an epigenetic inhibitor. The combination of DOX and SAHA showed synergistic effects on suppressing non-small cell lung cancer cells and xenograft tumors without apparent adverse effects. AE facilitated the delivery of drugs to tumor tissue and extended the retention time of drugs within tumors. Taken together, these studies suggest that the bioengineered artificial exosomes may serve as novel delivery strategy for chemotherapeutics to treat non-small cell lung cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Exosomas , Inhibidores de Histona Desacetilasas/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Vorinostat/administración & dosificación , Animales , Antineoplásicos/química , Línea Celular , Doxorrubicina/química , Portadores de Fármacos/química , Liberación de Fármacos , Epigénesis Genética , Humanos , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Carga Tumoral/efectos de los fármacos , Vorinostat/química
6.
Acta Pharmacol Sin ; 42(9): 1486-1497, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33893396

RESUMEN

Non-small cell lung cancer (NSCLC) is characterized by a high incidence of metastasis and poor survival. As epithelial-mesenchymal transition (EMT) is well recognized as a major factor initiating tumor metastasis, developing EMT inhibitor could be a feasible treatment for metastatic NSCLC. Recent studies show that triptolide isolated from Tripterygium wilfordii Hook F attenuated the migration and invasion of breast cancer, colon carcinoma, and ovarian cancer cells, and EMT played important roles in this process. In the present study we investigated the effect of triptolide on the migration and invasion of NSCLC cell lines. We showed that triptolide (0.5, 1.0, 2.0 nM) concentration-dependently inhibited the migration and invasion of NCI-H1299 cells. Triptolide treatment concentration-dependently suppressed EMT in NCI-H1299 cells, evidenced by significantly elevated E-cadherin expression and reduced expression of ZEB1, vimentin, and slug. Furthermore, triptolide treatment suppressed ß-catenin expression in NCI-H1299 and NCI-H460 cells, overexpression of ß-catenin antagonized triptolide-caused inhibition on EMT, whereas knockout of ß-catenin enhanced the inhibitory effect of triptolide on EMT. Administration of triptolide (0.75, 1.5 mg/kg per day, ip, every 2 days) for 18 days in NCI-H1299 xenograft mice dose-dependently suppressed the tumor growth, restrained EMT, and decreased lung metastasis, as evidence by significantly decreased expression of mesenchymal markers, increased expression of epithelial markers as well as reduced number of pulmonary lung metastatic foci. These results demonstrate that triptolide suppresses NSCLC metastasis by targeting EMT via reducing ß-catenin expression. Our study implies that triptolide may be developed as a potential agent for the therapy of NSCLC metastasis.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Diterpenos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fenantrenos/farmacología , beta Catenina/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Compuestos Epoxi/farmacología , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Ratones Desnudos , beta Catenina/genética
7.
J Nanobiotechnology ; 19(1): 364, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789273

RESUMEN

BACKGROUND: Malignant tumor is usually associated with epigenetic dysregulation, such as overexpression of histone deacetylase (HDAC), thus HDAC has emerged as a therapeutic target for cancer. Histone deacetylase inhibitor has been approved for clinical use to treat hematological cancers. However, the low solubility, short circulation lifetime, and high cytotoxicity partially limited their applications in solid tumor. METHODS: The upconversion nanoparticles (UC) modified with mesoporous silica (SUC) was used to load an HDACI, suberoylanilide hydroxamic acid (SAHA), and further camouflaged with M1 macrophage-derived exosome membranes (EMS). EMS was characterized in size and compositions. We also analyzed the epigenetic regulation induced by EMS. Furthermore, we evaluate the biodistribution and in vivo tumor inhibition after the systemic administration of EMS. RESULTS: This novel style spatiotemporal-resolved drug delivery system, EMS showed a high loading efficiency of SAHA. EMS could be taken up by lung cancer cells and lead to efficient epigenetic inhibition. We found that the integrin α4ß1 on M1-EM, was crucial for the homing of EMS to tumor tissues for the first time. In tumor-bearing mice, EMS showed spatiotemporal-resolved properties and facilitated the drug accumulation in the tumors, which induced superior anti-tumor effects. CONCLUSION: This novel style of spatiotemporal-resolved nanoparticles can be used as a theranostic platform for lung cancer therapy.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Exosomas , Membranas Artificiales , Sistema de Administración de Fármacos con Nanopartículas , Células A549 , Animales , Materiales Biomiméticos , Exosomas/química , Exosomas/metabolismo , Inhibidores de Histona Desacetilasas , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Desnudos , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/farmacocinética , Sistema de Administración de Fármacos con Nanopartículas/farmacología , Nanopartículas/química , Proteoma/efectos de los fármacos , Vorinostat
8.
J Nanobiotechnology ; 18(1): 110, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762751

RESUMEN

BACKGROUNDS: Due to the unexpected side effects of the iodinated contrast agents, novel contrast agents for X-ray computed tomography (CT) imaging are urgently needed. Nanoparticles made by heavy metal elements are often employed, such as gold and bismuth. These nanoparticles have the advantages of long in vivo circulation time and tumor targeted ability. However, due to the long residence time in vivo, these nanoparticles may bring unexpected toxicity and, the preparation methods of these nanoparticles are complicated and time-consuming. METHODS: In this investigation, a small molecular bismuth chelate using diethylenetriaminepentaacetic acid (DPTA) as the chelating agent was proposed to be an ideal CT contrast agent. RESULTS: The preparation method is easy and cost-effective. Moreover, the bismuth agent show better CT imaging for kidney than iohexol in the aspect of improved CT values. Up to 500 µM, the bismuth agent show negligible toxicity to L02 cells and negligible hemolysis. And, the bismuth agent did not induce detectable morphology changes to the main organs of the mice after intravenously repeated administration at a high dose of 250 mg/kg. The pharmacokinetics of the bismuth agent follows the first-order elimination kinetics and, it has a short half-life time of 0.602 h. The rapid clearance from the body promised its excellent biocompatibility. CONCLUSIONS: This bismuth agent may serve as a potential candidate for developing novel contrast agent for CT imaging in clinical applications.


Asunto(s)
Bismuto , Medios de Contraste , Tomografía Computarizada por Rayos X/métodos , Animales , Bismuto/química , Bismuto/farmacocinética , Bismuto/toxicidad , Medios de Contraste/química , Medios de Contraste/farmacocinética , Medios de Contraste/toxicidad , Yohexol/química , Yohexol/farmacocinética , Riñón/diagnóstico por imagen , Riñón/metabolismo , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Ratones , Ácido Pentético/química , Ácido Pentético/farmacocinética , Distribución Tisular , Imagen de Cuerpo Entero
9.
Sheng Li Xue Bao ; 71(2): 205-215, 2019 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-31008480

RESUMEN

At present, it is generally believed that the paracrine effect of stem cells in the repair of myocardial injury is one of the important ways for stem cell therapy. Exosomes are phospholipid bilayer-enclosed nanovesicles that secreted by cells under physiological and pathological conditions. Cargo loaded into exosomes including protein, lipids and nucleic acids can be delivered to recipient cells. Therefore, exosomes are recognized as important mediators for intercellular communication. It has been suggested that exosomes from stem cells (eg. embryonic stem cells, induced pluripotent stem cells, cardiac progenitor cells, mesenchymal stem cells and cardiosphere-derived cells) have protective effects against heart injury. In this review, we summarized recent research progresses on stem cell-derived exosomes in myocardial injury, including the therapeutic effects and mechanism.


Asunto(s)
Comunicación Celular , Exosomas/fisiología , Lesiones Cardíacas , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Humanos
10.
Mol Pharm ; 15(10): 4621-4631, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179511

RESUMEN

The purpose of this research is to establish an injectable hydrogel encapsulating copper sulfide (CuS) nanodots for photothermal therapy against cancer. The CuS nanodots were prepared by one-pot synthesis, and the thermosensitive Pluronic F127 was used as the hydrogel matrix. The CuS nanodots and the hydrogel were characterized by morphous, particle size, serum stability, photothermal performance upon repeated 808 nm laser irradiation, and rheology features. The effects of the CuS nanodots and the hydrogel were evaluated qualitatively and quantitatively in 4T1 mouse breast cancer cells. The retention, photothermal efficacy, therapeutic effects, and systemic toxicity of the hydrogel were assessed in tumor bearing mouse model. The CuS nanodots with a diameter of about 8 nm exhibited satisfying serum stability, photoheat conversion ability, and repeated laser exposure stability. The hydrogel encapsulation did not negatively influence the above features of the photothermal agent. The nanodot-loaded hydrogel shows a phase transition at body temperature and, as a result, a long retention in vivo. The photothermal-agent-embedded hydrogel played a promising photothermal therapeutic effect in the tumor bearing mouse model with low systemic toxicity after peritumoral administration.


Asunto(s)
Cobre/química , Hidrogeles/química , Nanopartículas/química , Fototerapia/métodos , Animales , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Femenino , Ratones , Poloxámero/química , Temperatura
11.
Acta Pharmacol Sin ; 39(4): 542-551, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29417947

RESUMEN

Exosomes are nano-sized vesicles that serve as mediators for intercellular communication through the delivery of cargo, including protein, lipids, nucleic acids or other cellular components, to neighboring or distant cells. Exosomal cargo may vary in response to different physiological or pathological conditions. The endosomal sorting complex required for transport (ESCRT) family has been widely accepted as a key mechanism in biogenesis and cargo sorting. On the other hand, accumulating evidence show that ESCRT-independent pathways exist. Due to the critical role of exosomes in intercellular communications in delivering cargo to recipient cells, exosomes have been investigated as a vector for the delivery of endogenous or exogenous cargo for therapeutic purposes. But the number of exosomes produced by cells is limited, which hampers their application. Synthetic exosome-mimics have been fabricated and investigated as a therapeutic tool for drug delivery. This review focuses on ESCRT-independent regulation of cargo loading into exosomes, including lipid raft and ceramide-mediated mechanisms, and reported exosomes or exosome-mimics with therapeutic effects.


Asunto(s)
Materiales Biomiméticos/farmacología , Portadores de Fármacos/farmacología , Exosomas/química , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Línea Celular , Ceramidas/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Exosomas/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , Nanopartículas/uso terapéutico
12.
Acta Pharmacol Sin ; 39(11): 1753-1759, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29980742

RESUMEN

The present study investigated the efficacy of the hepatoprotective drug matrine (Mtr) for its new application for hepatosteatosis and associated disorders in glucose homeostasis. The study was performed in two nutritional models of hepatosteatosis in mice with various abnormal glucose homeostasis: (1) high-fructose diet (HFru) induced hepatosteatosis and glucose intolerance from hepatic, and (2) hepatosteatosis and hyperglycemia induced by high-fat (HF) diet in combination with low doses of streptozotocin (STZ). Administration of Mtr (100 mg/kg every day in diet for 4 weeks) abolished HFru-induced hepatosteatosis and glucose intolerance. These effects were associated with the inhibition of HFru-stimulated de novo lipogenesis (DNL) without altering hepatic fatty acid oxidation. Further investigation revealed that HFru-induced endoplasmic reticulum (ER) stress was inhibited, whereas heat-shock protein 72 (an inducible chaperon protein) was increased by Mtr. In a type 2 diabetic model induced by HF-STZ, Mtr reduced hepatosteatosis and improved attenuated hyperglycemia. The hepatoprotective drug Mtr may be repurposed for the treatment of hepatosteatosis and associated disorders in glucose homeostasis. The inhibition of ER stress associated DNL and fatty acid influx appears to play an important role in these metabolic effects.


Asunto(s)
Alcaloides/uso terapéutico , Reposicionamiento de Medicamentos , Hígado Graso/tratamiento farmacológico , Intolerancia a la Glucosa/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Quinolizinas/uso terapéutico , Adiposidad/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Grasos/metabolismo , Fructosa/efectos adversos , Fructosa/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Homeostasis/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/fisiopatología , Ratones Endogámicos C57BL , Triglicéridos/metabolismo , Matrinas
13.
Biochim Biophys Acta ; 1852(1): 156-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25458704

RESUMEN

The unfolded protein response (UPR) pathways have been implicated in the development of hepatic insulin resistance during high fructose (HFru) feeding. The present study investigated their roles in initiating impaired insulin signaling transduction in the liver induced by HFru feeding in mice. HFru feeding resulted in hepatic steatosis, increased de novo lipogenesis and activation of two arms of the UPR pathways (IRE1/XBP1 and PERK/eIF2α) in similar patterns from 3days to 8weeks. In order to identify the earliest trigger of impaired insulin signaling in the liver, we fed mice a HFru diet for one day and revealed that only the IRE1 branch was activated (by 2-fold) and insulin-mediated Akt phosphorylation was blunted (~25%) in the liver. There were significant increases in phosphorylation of JNK (~50%) and IRS at serine site (~50%), protein content of ACC and FAS (up to 2.5-fold) and triglyceride level (2-fold) in liver (but not in muscle or fat). Blocking IRE1 activity abolished increases in JNK activity, IRS serine phosphorylation and protected insulin-stimulated Akt phosphorylation without altering hepatic steatosis or PKCε activity, a key link between lipids and insulin resistance. Our findings together suggest that activation of IRE1-JNK pathway is a key linker of impaired hepatic insulin signaling transduction induced by HFru feeding.


Asunto(s)
Fructosa/administración & dosificación , Fructosa/metabolismo , Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Triglicéridos/metabolismo , Animales , Resistencia a la Insulina , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada
14.
Biochim Biophys Acta ; 1852(7): 1511-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25906681

RESUMEN

Hepatic steatosis is often associated with insulin resistance as a hallmark of the metabolic syndrome in the liver. The present study investigated the effects of PPARα activation induced by fenofibrate (FB) on the relationship of insulin resistance and hepatic steatosis in mice fed a high-fat (HF) diet, which increases lipid influx into the liver. Mice were fed HF diet to induce insulin resistance and hepatic steatosis with or without FB. FB activated PPARα and ameliorated HF diet-induced glucose intolerance and hepatic insulin resistance without altering either hepatic steatosis or inflammation signaling (JNK or IKK). Interestingly, FB treatment simultaneously increased fatty acid (FA) synthesis (50%) and oxidation (66%, both p<0.01) into intermediate lipid metabolites, suggesting a FA oxidation-synthesis cycling in operation. Associated with these effects, diacylglycerols (DAGs) were sequestered within the lipid droplet/ER compartment, thus reducing their deposition in the cellular membrane, which is known to impair insulin signal transduction. These findings suggest that the reduction in membrane DAGs (rather than total hepatic steatosis) may be critical for the protection by fenofibrate-induced PPARα activation against hepatic insulin resistance induced by dietary fat.


Asunto(s)
Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Hígado Graso/metabolismo , Fenofibrato/farmacología , Hipolipemiantes/farmacología , Insulina/metabolismo , Gotas Lipídicas/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Retículo Endoplásmico/efectos de los fármacos , Hígado Graso/etiología , Gotas Lipídicas/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR alfa/metabolismo , Transducción de Señal
15.
J Exp Clin Cancer Res ; 43(1): 83, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493151

RESUMEN

BACKGROUND: Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS: Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS: Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION: The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Pericitos/metabolismo , Pericitos/patología , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Angiogénesis , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Movimiento Celular , Línea Celular Tumoral , Proliferación Celular
16.
Bioorg Med Chem Lett ; 23(21): 5836-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24047800

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator in insulin- and leptin-signaling cascades as well as a positive regulator in tumorigenesis, and much attention has been paid to PTP1B inhibitors as potential therapies for diabetes, obesity, and cancer. In the present study, the screening of a compound library of licorice flavonoids allowed for the discovery of several compounds, including licoagrone (3), licoagrodin (4), licoagroaurone (5), and isobavachalcone (6), as new PTP1B inhibitors. It was revealed that these compounds inhibit the activity of PTP1B in different modes and with different selectivities and that they exhibit different cellular activity in the insulin-signaling pathway. Glycybenzofuran (1), a competitive PTP1B inhibitor, showed both excellent inhibitory selectivity against PTP1B and cellular activity on the insulin-stimulated Akt phosphorylation level. The similarity of its action profiling in the insulin-signaling pathway suggested its potential as a new anti-insulin-resistant drug candidate.


Asunto(s)
Flavonoides/química , Flavonoides/farmacología , Glycyrrhiza/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Flavonoides/aislamiento & purificación , Células Hep G2 , Humanos , Insulina/metabolismo , Fosforilación/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
17.
Biomater Adv ; 147: 213323, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764198

RESUMEN

The cancer chemodynamic therapy based on the Fenton reaction has been attracting more and more attention. However, the performance of the Fenton reaction is restricted by the unsuitable physiological pH value and inadequate H2O2 content in the tumor microenvironment (TME). In this study, we proposed a novel method of inducing lipid peroxide (LPO) of the cancer cell membrane, whose performance is not limited by the pH value and H2O2 in the TME. The activatable LPO-inducing liposomes were constructed by encapsulating Fe3+-containing compound ferric ammonium citrate (FC) in the unsaturated soybean phospholipids (SPC). It was found that the FC could be reduced by the overexpressed glutathione (GSH) in the TME and produce iron redox couple. The Fe3+/Fe2+ mediated the peroxidation of the unsaturated SPC and induced the LPO in the cancer cells. Finally, LPO accumulation led to cancer cell death and tumor growth inhibition. Furthermore, the activatable liposomes did not damage healthy tissues because of the low GSH content in normal tissues and the GSH-triggered activation of the nanocarrier. Together, our findings revealed that FC-SPC-lipo displayed excellent anti-tumor performance and its therapeutic effects are less influenced by the TME, compared with the traditional ferroptosis.


Asunto(s)
Peróxidos Lipídicos , Neoplasias , Humanos , Peróxidos Lipídicos/farmacología , Peróxidos Lipídicos/uso terapéutico , Liposomas/uso terapéutico , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Membrana Celular/metabolismo , Microambiente Tumoral
18.
Planta Med ; 78(1): 82-5, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21969117

RESUMEN

Three new clerodane diterpene glycosides, tinospinosides A (1), B (2), and C (3) were isolated from the roots of Tinospora sagittata (Oliv.) Gagnep. Their structures were determined to be (2 S,4a R,6a R,9 R,10a S,10b S)-2-(3-furanyl)-9-( ß-D-glucopyranosyloxy)-1,4,4a,5,6,6a,9,10,10a,10b-decahydro-6a,10b-dimethyl-4-oxo-2H-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester (1), (2 S,4a S,6a R,9 R,10a R,10b S)-2-(3-furanyl)-9-( ß-D-glucopyranosyloxy)-1,4,4a,5,6,6a,9,10,10a,10b-decahydro-4a-hydroxyl-6a,10b-dimethyl-4-oxo-2H-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester (2) and (2 S,4a R,6a R,9 R,10a R,10b S)-2-(3-furanyl)-9-( ß-D-glucopyranosyloxy)-1,4,4a,5,6,6a,9,10,10a,10b-decahydro-4a-hydroxyl-6a,10b-dimethyl-4-oxo-2H-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester (3), by various spectroscopic analyses, chemical reactions, and computer-assisted calculations. The inhibitory activities of NO production by these compounds and their chemical derivatives in lipopolysaccharide and TNF γ-activated macrophage-like cell line J774.1 were tested. Tinospin A, 12- EPI-tinospin A, tinospinoside B, and tinospinoside C showed inhibitory activities of NO production with the IC(50) values of 162, 182, 290, and 218 µM, respectively.


Asunto(s)
Diterpenos/aislamiento & purificación , Macrófagos/efectos de los fármacos , Óxido Nítrico/antagonistas & inhibidores , Extractos Vegetales/química , Tinospora/química , Animales , Línea Celular , Diterpenos/farmacología , Concentración 50 Inhibidora , Lipopolisacáridos , Macrófagos/metabolismo , Ratones , Estructura Molecular , Extractos Vegetales/farmacología , Raíces de Plantas , Factores de Necrosis Tumoral
19.
Chem Biol Interact ; 361: 109966, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35513012

RESUMEN

Tumor angiogenesis inhibitors such as Bevacizumab, Ramucirumab and Endostar have been applied to the therapy of non-small cell lung carcinoma (NSCLC) patients, especially for lung adenocarcinoma (LUAD). However, several safe concerns such as neutropenia, febrile neutropenia and hypertension pulmonary hemorrhage limit their further development. And they often showed poor efficacy and serious side effect for lung squamous cell carcinoma (LUSC) patient. Thus, identification of effective and safe tumor angiogenesis inhibitor for NSCLC therapy is warranted. Apigenin is a bioflavonoid with potential anti-tumor effect and perfect safety, but its effect on tumor angiogenesis and underlying mechanism are still unclear. Herein, we found that apigenin not merely suppressed endothelial cells related motilities but also reduced pericyte coverage. Further research showed that apigenin had strong suppressive activity against HIF-1α expression and its downstream VEGF-A/VEGFR2 and PDGF-BB/PDGFßR signaling pathway. Apigenin also reduced microvessel density and pericyte coverage on the xengraft model of NCI-H1299 cells, leading to suppression of tumor growth. Moreover, apigenein showed perfect anti-angiogenic effect in xengraft model of LUSC cell NCI-H1703 cells, indicating it may be developed into a potential angiogenesis inhibitor for LUSC patient. Collectively, our study provides new insights into the anti-tumor mechanism of apigenin and suggests that apigenin is a safe and effective angiogenesis inhibitor for NSCLC therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Apigenina/farmacología , Apigenina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Células Endoteliales/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Acta Pharm Sin B ; 12(10): 3877-3890, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36213531

RESUMEN

Metastasis is crucial for the mortality of non-small cell lung carcinoma (NSCLC) patients. The epithelial-mesenchymal transition (EMT) plays a critical role in regulating tumor metastasis. Glioma-associated oncogene 1 (Gli1) is aberrantly active in a series of tumor tissues. However, the molecular regulatory relationships between Gli1 and NSCLC metastasis have not yet been identified. Herein, we reported Gli1 promoted NSCLC metastasis. High Gli1 expression was associated with poor survival of NSCLC patients. Ectopic expression of Gli1 in low metastatic A549 and NCI-H460 cells enhanced their migration, invasion abilities and facilitated EMT process, whereas knock-down of Gli1 in high metastatic NCI-H1299 and NCI-H1703 cells showed an opposite effect. Notably, Gli1 overexpression accelerated the lung and liver metastasis of NSCLC in the intravenously injected metastasis model. Further research showed that Gli1 positively regulated Snail expression by binding to its promoter and enhancing its protein stability, thereby facilitating the migration, invasion and EMT of NSCLC. In addition, administration of GANT-61, a Gli1 inhibitor, obviously suppressed the metastasis of NSCLC. Collectively, our study reveals that Gli1 is a critical regulator for NSCLC metastasis and suggests that targeting Gli1 is a prospective therapy strategy for metastatic NSCLC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA