Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(19): 10924-10939, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33010171

RESUMEN

NBS1 is a critical component of the MRN (MRE11/RAD50/NBS1) complex, which regulates ATM- and ATR-mediated DNA damage response (DDR) pathways. Mutations in NBS1 cause the human genomic instability syndrome Nijmegen Breakage Syndrome (NBS), of which neuronal deficits, including microcephaly and intellectual disability, are classical hallmarks. Given its function in the DDR to ensure proper proliferation and prevent death of replicating cells, NBS1 is essential for life. Here we show that, unexpectedly, Nbs1 deletion is dispensable for postmitotic neurons, but compromises their arborization and migration due to dysregulated Notch signaling. We find that Nbs1 interacts with NICD-RBPJ, the effector of Notch signaling, and inhibits Notch activity. Genetic ablation or pharmaceutical inhibition of Notch signaling rescues the maturation and migration defects of Nbs1-deficient neurons in vitro and in vivo. Upregulation of Notch by Nbs1 deletion is independent of the key DDR downstream effector p53 and inactivation of each MRN component produces a different pattern of Notch activity and distinct neuronal defects. These data indicate that neuronal defects and aberrant Notch activity in Nbs1-deficient cells are unlikely to be a direct consequence of loss of MRN-mediated DDR function. This study discloses a novel function of NBS1 in crosstalk with the Notch pathway in neuron development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Neurogénesis , Neuronas/metabolismo , Receptores Notch/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Animales , Células Cultivadas , Daño del ADN , Reparación del ADN , Embrión de Mamíferos , Fibroblastos , Proteína Homóloga de MRE11/metabolismo , Ratones , Neuronas/citología
2.
PLoS Genet ; 9(8): e1003702, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950734

RESUMEN

ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins - Dpb11(TopBP1), Ddc1(Rad9) and Dna2 - all interact with and activate Mec1(ATR). Each contains an ATR activation domain (ADD) that interacts directly with the Mec1(ATR):Ddc2(ATRIP) complex. Any of the Dpb11(TopBP1), Ddc1(Rad9) or Dna2 ADDs is sufficient to activate Mec1(ATR) in vitro. All three can also independently activate Mec1(ATR) in vivo: the checkpoint is lost only when all three AADs are absent. In metazoans, only TopBP1 has been identified as a direct ATR activator. Depletion-replacement approaches suggest the TopBP1-AAD is both sufficient and necessary for ATR activation. The physiological function of the TopBP1 AAD is, however, unknown. We created a knock-in point mutation (W1147R) that ablates mouse TopBP1-AAD function. TopBP1-W1147R is early embryonic lethal. To analyse TopBP1-W1147R cellular function in vivo, we silenced the wild type TopBP1 allele in heterozygous MEFs. AAD inactivation impaired cell proliferation, promoted premature senescence and compromised Chk1 signalling following UV irradiation. We also show enforced TopBP1 dimerization promotes ATR-dependent Chk1 phosphorylation. Our data suggest that, unlike the yeast models, the TopBP1-AAD is the major activator of ATR, sustaining cell proliferation and embryonic development.


Asunto(s)
Proteínas Portadoras/genética , Proliferación Celular , Senescencia Celular/genética , Desarrollo Embrionario/genética , Alelos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Ratones , Fosforilación , Mutación Puntual , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína/genética , Transducción de Señal
3.
Cells ; 10(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34943873

RESUMEN

SMG6 is an endonuclease, which cleaves mRNAs during nonsense-mediated mRNA decay (NMD), thereby regulating gene expression and controling mRNA quality. SMG6 has been shown as a differentiation license factor of totipotent embryonic stem cells. To investigate whether it controls the differentiation of lineage-specific pluripotent progenitor cells, we inactivated Smg6 in murine embryonic neural stem cells. Nestin-Cre-mediated deletion of Smg6 in mouse neuroprogenitor cells (NPCs) caused perinatal lethality. Mutant mice brains showed normal structure at E14.5 but great reduction of the cortical NPCs and late-born cortical neurons during later stages of neurogenesis (i.e., E18.5). Smg6 inactivation led to dramatic cell death in ganglionic eminence (GE) and a reduction of interneurons at E14.5. Interestingly, neurosphere assays showed self-renewal defects specifically in interneuron progenitors but not in cortical NPCs. RT-qPCR analysis revealed that the interneuron differentiation regulators Dlx1 and Dlx2 were reduced after Smg6 deletion. Intriguingly, when Smg6 was deleted specifically in cortical and hippocampal progenitors, the mutant mice were viable and showed normal size and architecture of the cortex at E18.5. Thus, SMG6 regulates cell fate in a cell type-specific manner and is more important for neuroprogenitors originating from the GE than for progenitors from the cortex.


Asunto(s)
Endorribonucleasas/metabolismo , Neurogénesis , Ribonucleasas/metabolismo , Telomerasa/metabolismo , Animales , Animales Recién Nacidos , Ciclo Celular , Diferenciación Celular , Autorrenovación de las Células , Supervivencia Celular , Sistema Nervioso Central/patología , Reparación del ADN , Embrión de Mamíferos/patología , Endorribonucleasas/genética , Eliminación de Gen , Ratones , Modelos Biológicos , Mutación/genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Neuronas/patología , Telomerasa/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA