Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 176(4): 702-715.e14, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661758

RESUMEN

Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/ultraestructura , Péptidos/metabolismo , Venenos de Araña/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetulus , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Células HEK293 , Humanos , Activación del Canal Iónico , Péptidos/toxicidad , Dominios Proteicos , Venenos de Araña/toxicidad , Arañas , Bloqueadores del Canal de Sodio Activado por Voltaje , Canales de Sodio Activados por Voltaje/metabolismo
3.
Cardiology ; 149(2): 147-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38417418

RESUMEN

INTRODUCTION: The aim of the study was to investigate the clinical characteristics, surgical treatment, and long-term efficacy of primary right heart tumors. METHODS: This study is retrospective analysis of the clinical data of 70 patients with primary right heart tumors admitted to our department between 1980 and 2022 (observation group) and 70 patients with left heart tumors during the same period (control group). The surgical treatment was performed under cardiopulmonary bypass after differential diagnosis by echocardiography, cardiac CTA, and PET-CT before the surgery. The perioperative characteristics, recurrence rate, and long-term survival rates of right heart tumor versus left heart tumor were compared. RESULTS: The most common pathological types of right heart tumors were myxoma (60%), lipoma (8.57%), and papillary elastofibroma (7.14%). During the perioperative period, there were 1 case of systemic embolism in the observation group, compared with 6 in the control group (p = 0.026), 13 cases of malignant tumor in the observation group versus 1 in the control group (p = 0.01). During the follow-up period, there were 15 cases of tumor recurrence and 17 cases of death in the observation group versus 4 (p = 0.002) and 7 in the control group (p = 0.006), comparatively. CONCLUSION: Compared with left heart tumors, primary right heart tumors had a higher incidence of malignant tumors and a lower risk of systemic embolism during perioperative period. During the follow-up period, primary right heart tumors had a higher rate of tumor recurrence and a lower long-term survival rate.


Asunto(s)
Embolia , Neoplasias Cardíacas , Humanos , Recurrencia Local de Neoplasia/etiología , Estudios Retrospectivos , Tomografía Computarizada por Tomografía de Emisión de Positrones/efectos adversos , Neoplasias Cardíacas/diagnóstico por imagen , Neoplasias Cardíacas/cirugía , Embolia/complicaciones
4.
Microb Pathog ; 182: 106165, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37224983

RESUMEN

AIMS: To evaluate the potential of Myricetin against S.aureus induced osteomyelitis. BACKGROUND: Osteomyelitis is infected condition of bone by micro-organisms. The mitogen-activated protein kinase (MAPK), inflammatory cytokines and Toll-like receptor-2 (TLR-2) pathway are mainly involved in osteomyelitis. Myricetin is a plant-food derived flavonoid which shows anti-inflammatory activity. OBJECTIVE: In the present study, we evaluated the potential of Myricetin against S.aureus induced osteomyelitis. MC3T3-E1 cells were used for in vitro studies. METHOD: Murine model of osteomyelitis was developed in BALB/c mice by injecting S.aureus in the medullary cavity of the femur. The mice were studied for bone destruction, anti-biofilm activity, osteoblast growth markers alkaline phosphatase (ALP), osteopontin (OCN) and collagen type-I (COLL-1) were studied by RT-PCR, ELISA analysis for levels of proinflammatory factors CRP, IL-6 and IL-1ß. Expression of proteins by Western blot analysis and anti-biofilm effect by Sytox green dye fluorescence assay. Target confirmation was done by performing in silico docking analysis. RESULTS: Myricetin reduced bone destruction in osteomyelitis induced mice. The treatment decreased bone levels of ALP, OCN, COLL-1 and TLR2. Myricetin decreased serum levels of CRP, IL-6 and IL-1ß. The treatment suppressed activation of MAPK pathway and showed anti-biofilm effect. Docking studies suggested high binding affinity of Myricetin with MAPK protein in silico, by showing lower binding energies. CONCLUSION: Myricetin suppresses osteomyelitis by inhibiting ALP, OCN, COLL-1 via the TLR2 and MAPK pathway involving inhibition of biofilm formation. In silico studies suggested MAPK as potential binding protein for myricetin.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Osteomielitis , Ratones , Animales , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Interleucina-6 , Flavonoides/farmacología , Osteomielitis/tratamiento farmacológico
5.
Proc Natl Acad Sci U S A ; 116(51): 26008-26019, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31796582

RESUMEN

The transient receptor potential ankyrin 1 (TRPA1) channel functions as an irritant sensor and is a therapeutic target for treating pain, itch, and respiratory diseases. As a ligand-gated channel, TRPA1 can be activated by electrophilic compounds such as allyl isothiocyanate (AITC) through covalent modification or activated by noncovalent agonists through ligand binding. However, how covalent modification leads to channel opening and, importantly, how noncovalent binding activates TRPA1 are not well-understood. Here we report a class of piperidine carboxamides (PIPCs) as potent, noncovalent agonists of human TRPA1. Based on their species-specific effects on human and rat channels, we identified residues critical for channel activation; we then generated binding modes for TRPA1-PIPC interactions using structural modeling, molecular docking, and mutational analysis. We show that PIPCs bind to a hydrophobic site located at the interface of the pore helix 1 (PH1) and S5 and S6 transmembrane segments. Interestingly, this binding site overlaps with that of known allosteric modulators, such as A-967079 and propofol. Similar binding sites, involving π-helix rearrangements on S6, have been recently reported for other TRP channels, suggesting an evolutionarily conserved mechanism. Finally, we show that for PIPC analogs, predictions from computational modeling are consistent with experimental structure-activity studies, thereby suggesting strategies for rational drug design.


Asunto(s)
Simulación del Acoplamiento Molecular , Piperidinas/farmacología , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/efectos de los fármacos , Animales , Sitios de Unión , Canales de Calcio/química , Canales de Calcio/metabolismo , Diseño de Fármacos , Humanos , Isotiocianatos , Ligandos , Modelos Estructurales , Mutagénesis , Oximas/farmacología , Propofol/farmacología , Dominios Proteicos , Ratas , Especificidad de la Especie , Canal Catiónico TRPA1/metabolismo
6.
J Environ Manage ; 314: 115075, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35436705

RESUMEN

Catalytic reduction of nitroaromatic compounds using low-cost non-precious metal containing catalyst remains an essential topic in wastewater treatment. Herein, copper hexacyanoferrate nanospheres decorated copper foams (CF) were prepared by a facile method, and it was used as structured catalysts for the reduction of p-nitrophenol (p-NP) and azo dyes. The catalyst obtained by calcination at 200 °C shows the highest catalytic activity, with an almost complete reduction of p-NP within 3 min with a rate of 2.057 min-1 at room temperature, and it exhibited excellent reusability in successive 6 cycles. The effects of temperature, initial concentration, pH, and flow rate on p-NP reduction were investigated. Moreover, the mechanistic investigation revealed that fast electron transfer ability and enhanced adsorption for p-NP contributed to its enhanced catalytic performances. This work put forward an efficient approach for the construction of structured catalysts with enhanced performance in catalytic reduction applications.


Asunto(s)
Compuestos Azo , Nanosferas , Compuestos Azo/química , Cobre/química , Ferrocianuros , Nitrofenoles
7.
Proc Natl Acad Sci U S A ; 115(4): E792-E801, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311306

RESUMEN

Many ion channels, including Nav1.7, Cav1.3, and Kv1.3, are linked to human pathologies and are important therapeutic targets. To develop efficacious and safe drugs, subtype-selective modulation is essential, but has been extremely difficult to achieve. We postulate that this challenge is caused by the poor assay design, and investigate the Nav1.7 membrane potential assay, one of the most extensively employed screening assays in modern drug discovery. The assay uses veratridine to activate channels, and compounds are identified based on the inhibition of veratridine-evoked activities. We show that this assay is biased toward nonselective pore blockers and fails to detect the most potent, selective voltage-sensing domain 4 (VSD4) blockers, including PF-05089771 (PF-771) and GX-936. By eliminating a key binding site for pore blockers and replacing veratridine with a VSD-4 binding activator, we directed the assay toward non-pore-blocking mechanisms and discovered Nav1.7-selective chemical scaffolds. Hence, we address a major hurdle in Nav1.7 drug discovery, and this mechanistic approach to assay design is applicable to Cav3.1, Kv1.3, and many other ion channels to facilitate drug discovery.


Asunto(s)
Descubrimiento de Drogas/métodos , Terapia Molecular Dirigida , Bloqueadores del Canal de Sodio Activado por Voltaje/análisis , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas de Insectos , Potenciales de la Membrana , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Ratas , Veratridina , Venenos de Avispas
8.
Cardiol Young ; 31(8): 1290-1296, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33641690

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate the mid-term outcome of aortic valve replacement for bicuspid aortic valve and tricuspid aortic valve and the related risk factors. METHODS: From January 2014 to June 2019, 177 tricuspid aortic valve patients and 101 bicuspid aortic valve patients who underwent aortic valve replacement in our hospital were collected. 1:1 propensity score matching analysis was used to control the bias in patient selection. The perioperative and follow-up data between the two groups were compared. Independent risk factors which were associated with the continued dilatation of the ascending aorta were identified by univariate or multivariate logistic regression analysis. RESULTS: After the matching procedure, 160 patients were included in the analysis (80 in each group). Baseline characteristics, intraoperative, and perioperative outcomes were similar between the two groups (all p > 0.05). Moreover, 67 patients in the tricuspid aortic valve group and 70 in the bicuspid aortic valve group completed the follow-up. The ascending aorta change, annual change rate, and the proportion of continuous dilation of ascending aorta in bicuspid aortic valve group were significantly higher than those in the tricuspid aortic valve group (p < 0.05). Multivariate logistic regression analysis showed that type 1 in bicuspid aortic valve (OR 5.173; 95% CI 1.772, 15.101; p = 0.003), aortic regurgitation (OR 3.673; 95% CI 1.133, 11.908; p = 0.030), and aortic valve stenosis with regurgitation (OR 6.489; 95% CI 1.726, 24.404; p = 0.006) were independent risk factors for the continued dilatation of the ascending aorta in all AV patients. Furthermore, the multivariate logistic regression analysis showed that type 1 in bicuspid aortic valve (OR 5.157; 95% CI 1.053, 25.272; p = 0.043), age ≥ 40 years (OR 6.956; 95% CI 1.228, 39.410; p = 0.028), and aortic regurgitation (OR 4.322; 95% CI 1.174, 15.911; p = 0.028) were independent risk factors for the continued dilatation of the ascending aorta in bicuspid aortic valve patients. CONCLUSION: Compared with tricuspid aortic valve patients, the ascending aorta of bicuspid aortic valve patients is more likely to continue to enlarge after aortic valve replacement. Type 1 in bicuspid aortic valve, age ≥ 40 years, and aortic regurgitation were the independent risk factors.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Adulto , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estudios de Seguimiento , Enfermedades de las Válvulas Cardíacas/epidemiología , Enfermedades de las Válvulas Cardíacas/cirugía , Humanos
9.
Angew Chem Int Ed Engl ; 59(19): 7430-7434, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32037716

RESUMEN

The hydroformylation of olefins is one of the most important homogeneously catalyzed industrial reactions for aldehyde synthesis. Various ligands can be used to obtain the desired linear aldehydes in the hydroformylation of aliphatic olefins. However, in the hydroformylation of aromatic substrates, branched aldehydes are formed preferentially with common ligands. In this study, a novel approach to selectively obtain linear aldehydes in the hydroformylation of styrene and its derivatives was developed by coupling with a water-gas shift reaction on a Rh single-atom catalyst without the use of ligands. Detailed studies revealed that the hydrogen generated in situ from the water-gas shift is critical for the highly regioselective formation of linear products. The coupling of a traditional homogeneous catalytic process with a heterogeneous catalytic reaction to tune product selectivity may provide a new avenue for the heterogenization of homogenous catalytic processes.

10.
Angew Chem Int Ed Engl ; 57(26): 7795-7799, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29697178

RESUMEN

The solvent-free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single-atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O2 activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal-support interfacial sites.

11.
Angew Chem Int Ed Engl ; 55(52): 16054-16058, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-27862789

RESUMEN

Homogeneous catalysts generally possess superior catalytic performance compared to heterogeneous catalysts. However, the issue of catalyst separation and recycling severely limits their use in practical applications. Single-atom catalysts have the advantages of both homogeneous catalysts, such as "isolated sites", and heterogeneous catalysts, such as stability and reusability, and thus would be a promising alternative to traditional homogeneous catalysts. In the hydroformylation of olefins, single-atom Rh catalysts supported on ZnO nanowires demonstrate similar efficiency (TON≈40000) compared to that of homogeneous Wilkinson's catalyst (TON≈19000). HAADF-STEM and infrared CO chemisorption experiments identified isolated Rh atoms on the support. XPS and XANES spectra indicate that the electronic state of Rh is almost metallic. The catalysts are about one or two orders of magnitude more active than most reported heterogeneous catalysts and can be reused four times without an obvious decline in activity.

12.
J Biol Chem ; 289(22): 15441-8, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24727474

RESUMEN

Protons activate acid-sensing ion channel 1a (ASIC1a) in the central nervous system (CNS) although the impact of such activation on brain outputs remains elusive. Progress elucidating the functional roles of ASIC1a in the CNS has been hindered by technical difficulties of achieving acidification with spatial and temporal precision. We have implemented a method to control optically the opening of ASIC1a in brain slices and also in awake animals. The light-driven H(+) pump ArchT was expressed in astrocytes of mouse cortex by injection of adenoviral vectors containing a strong and astrocyte-specific promoter. Illumination with amber light acidified the surrounding interstitium and led to activation of endogenous ASIC1a channels and firing of action potentials in neurons localized in close proximity to ArchT-expressing astrocytes. We conclude that this optogenetic method offers a minimally invasive approach that enables examining the biological consequences of ASIC1a currents in any structure of the CNS and in the modulation of animal behaviors.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Potenciales de Acción/fisiología , Astrocitos/fisiología , Comunicación Celular/fisiología , Neuronas/fisiología , Acidosis/fisiopatología , Ácidos/metabolismo , Potenciales de Acción/efectos de la radiación , Animales , Astrocitos/citología , Células CHO , Células Cultivadas , Corteza Cerebral/citología , Cricetulus , Concentración de Iones de Hidrógeno , Luz , Ratones , Neuronas/citología , Técnicas de Cultivo de Órganos , Estimulación Luminosa , Bombas de Protones/metabolismo
13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(2): 206-210, 2024 Feb 15.
Artículo en Zh | MEDLINE | ID: mdl-38385234

RESUMEN

Objective: To explore a method of loading exosomes onto absorbable stents. Methods: By building a stent-(3-aminopropyl) triethoxysilane-1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 5000]-exosomes connection, the exosomes were loaded onto absorbable stents to obtained the exosome-eluting absorbable stents. The surface conditions of the stents and absorption of exosomes were observed by scanning electron microscope and identified through the time-of-flight mass spectrometry; the roughness of the stents' surfaces was observed by atomic force microscope; the appearances and sizes of the stents were observed by stereomicroscope; and the radial force was tested by tensile test machine. The absorbable stents were used as control. Results: The scanning electron microscope observation showed that the exosome-eluting absorbable stents had some small irregular cracks on the surface where many exosomes could be seen. The atomic force microscopy observation showed that within the range of 5 µm 2, the surface roughness of the absorbable stents was ±20 nm, while the surface roughness of the exosome-eluting absorbable stents was ±70 nm. In the results of time-of-flight mass spectrometry, both the exosome-eluting absorbable stents and exosomes had a peak at the mass charge ratio of 81 (m/z 81), while the absorbable stents did not have this peak. The peak of exosome-eluting absorbable stents at m/z 73 showed a significant decrease compared to the absorbable stents. The stereomicroscope observation showed that the sizes of exosome-eluting absorbable stents met standards and the surfaces had no cracks, burrs, or depressions. The radial force results of the exosome-eluting absorbable stents met the strength standards of the original absorbable stent. Conclusion: By applying the chemical connection method, the exosomes successfully loaded onto the absorbable stents. And the sizes and radial forces of this exosome-eluting absorbable stents meet the standards of the original absorbable stents.


Asunto(s)
Exosomas , Stents , Polietilenglicoles , Implantes Absorbibles
14.
Foods ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672911

RESUMEN

This study aims to comprehensively investigate the effects of hot-air dehydration on the quality of blue honeysuckle berries (Lonicera caerulea L.). The results demonstrated that drying with hot air at 40-65 °C for 7-72 h resulted in blue honeysuckle berries with a moisture content of 0.21-1.10 g H2O/g dry weight. Generally, low to medium temperatures (40-55 °C) showed a better effect on the quality than high temperatures (60-65 °C). Specifically, drying at 40 °C exclusively resulted in better retention of cuticular wax, the best sensory appearance, and the highest total phenolic content. Drying at 45 °C and 50 °C resulted in the highest antioxidant capacity and the optimal sensory flavor. Drying at 55 °C led to the highest soluble solid/acid ratio, ascorbic acid concentration, total flavonoid, and total anthocyanin. The work introduces an innovative raw berry product and provides a comprehensive practical and theoretical framework for convective dehydration of blue honeysuckle berries.

15.
Sci Rep ; 14(1): 3765, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355600

RESUMEN

Homozygous Apolipoprotein L1 (APOL1) variants G1 and G2 cause APOL1-mediated kidney disease, purportedly acting as surface cation channels in podocytes. APOL1-G0 exhibits various single nucleotide polymorphisms, most commonly haplotype E150K, M228I and R255K ("KIK"; the Reference Sequence is "EMR"), whereas variants G1 and G2 are mostly found in a single "African" haplotype background ("EIK"). Several labs reported cytotoxicity with risk variants G1 and G2 in KIK or EIK background haplotypes, but used HEK-293 cells and did not verify equal surface expression. To see if haplotype matters in a more relevant cell type, we induced APOL1-G0, G1 and G2 EIK, KIK and EMR at comparable surface levels in immortalized podocytes. G1 and G2 risk variants (but not G0) caused dose-dependent podocyte death within 48h only in their native African EIK haplotype and correlated with K+ conductance (thallium FLIPR). We ruled out differences in localization and trafficking, except for possibly greater surface clustering of cytotoxic haplotypes. APOL1 surface expression was required, since Brefeldin A rescued cytotoxicity; and cytoplasmic isoforms vB3 and vC were not cytotoxic. Thus, APOL1-EIK risk variants kill podocytes in a dose and haplotype-dependent manner (as in HEK-293 cells), whereas unlike in HEK-293 cells the KIK risk variants did not.


Asunto(s)
Podocitos , Humanos , Podocitos/metabolismo , Haplotipos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Células HEK293 , Variación Genética
16.
J Med Chem ; 67(6): 4819-4832, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470227

RESUMEN

The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.


Asunto(s)
Encéfalo , Hidantoínas , Humanos , Oligodendroglía/metabolismo , Diseño de Fármacos , Hidantoínas/metabolismo
17.
J Biol Chem ; 287(48): 40680-9, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23048040

RESUMEN

BACKGROUND: Consecutive proton stimulation reduces ASIC1a peak currents leading to silencing of channels. RESULTS: Kinetic analysis using a fast perfusion system shows that human ASIC1a has two desensitized states with markedly different stabilities. CONCLUSION: High frequency trains of short stimuli prevent desensitization. SIGNIFICANCE: The results predict steady ASIC1a responses to high frequency release of protons as in synaptic transmission. ASIC1a is a neuronal sodium channel activated by external H(+) ions. To date, all the characterization of ASIC1a has been conducted applying long H(+) stimuli lasting several seconds. Such experimental protocols weaken and even silence ASIC1a currents to repetitive stimulation. In this work, we examined ASIC1a currents by methods that use rapid application and removal of H(+). We found that brief H(+) stimuli, <100 ms, even if applied at high frequency, prevent desensitization thereby generate full and steady peak currents of human ASIC1a. Kinetic analysis of recovery from desensitization of hASIC1a revealed two desensitized states: short- and long-lasting with time constants of τ(Ds) ≤0.5 and τ(Dl) = 229 s, while in chicken ASIC1a the two desensitized states have similar values τ(D) 4.5 s. It is the large difference in stability of the two desensitized states that makes hASIC1a desensitization more pronounced and complex than in cASIC1a. Furthermore, recovery from desensitization was unrelated to cytosolic variations in pH, ATP, PIP(2), or redox state but was dependent on the hydrophobicity of key residues in the first transmembrane segment (TM1). In conclusion, brief H(+)-stimuli maintain steady the magnitude of peak currents thereby the ASIC1a channel is well poised to partake in high frequency signals in the brain.


Asunto(s)
Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Cinética , Ratones , Oocitos/química , Oocitos/metabolismo , Xenopus
18.
Braz J Cardiovasc Surg ; 38(1): 183-190, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675490

RESUMEN

INTRODUCTION: Acute type A aortic dissection (AAAD) in late pregnancy is a rare but severe disease. Lack of clinical experience is the main cause of high mortality. This study tries to investigate the multidisciplinary therapeutic strategy for these patients. CASE PRESENTATION: We reported three patients with AAAD in late pregnancy. Sudden chest pain was the main clinical symptom before operation. All three patients and their newborns survived through multidisciplinary approach in diagnosis and treatment. No serious complications occurred during the mid-term follow-up. CONCLUSION: Multidisciplinary diagnosis and treatment strategy play a crucial role in saving the lives of pregnant women with AAAD.


Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Embarazo , Humanos , Recién Nacido , Femenino , Aneurisma de la Aorta/complicaciones , Aneurisma de la Aorta/diagnóstico por imagen , Aneurisma de la Aorta/cirugía , Resultado del Tratamiento , Disección Aórtica/complicaciones , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/cirugía , Complicaciones Posoperatorias/etiología
19.
Elife ; 122023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36975198

RESUMEN

The voltage-gated sodium (NaV) channel NaV1.7 has been identified as a potential novel analgesic target due to its involvement in human pain syndromes. However, clinically available NaV channel-blocking drugs are not selective among the nine NaV channel subtypes, NaV1.1-NaV1.9. Moreover, the two currently known classes of NaV1.7 subtype-selective inhibitors (aryl- and acylsulfonamides) have undesirable characteristics that may limit their development. To this point understanding of the structure-activity relationships of the acylsulfonamide class of NaV1.7 inhibitors, exemplified by the clinical development candidate GDC-0310, has been based solely on a single co-crystal structure of an arylsulfonamide inhibitor bound to voltage-sensing domain 4 (VSD4). To advance inhibitor design targeting the NaV1.7 channel, we pursued high-resolution ligand-bound NaV1.7-VSD4 structures using cryogenic electron microscopy (cryo-EM). Here, we report that GDC-0310 engages the NaV1.7-VSD4 through an unexpected binding mode orthogonal to the arylsulfonamide inhibitor class binding pose, which identifies a previously unknown ligand binding site in NaV channels. This finding enabled the design of a novel hybrid inhibitor series that bridges the aryl- and acylsulfonamide binding pockets and allows for the generation of molecules with substantially differentiated structures and properties. Overall, our study highlights the power of cryo-EM methods to pursue challenging drug targets using iterative and high-resolution structure-guided inhibitor design. This work also underscores an important role of the membrane bilayer in the optimization of selective NaV channel modulators targeting VSD4.


Asunto(s)
Microscopía por Crioelectrón , Humanos , Ligandos , Dominios Proteicos , Sitios de Unión , Relación Estructura-Actividad
20.
SLAS Discov ; 27(4): 278-285, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35058183

RESUMEN

Ion channels are drug targets for neurologic, cardiac, and immunologic diseases. Many disease-associated mutations and drugs modulate voltage-gated ion channel activation and inactivation, suggesting that characterizing state-dependent effects of test compounds at an early stage of drug development can be of great benefit. Historically, the effects of compounds on ion channel biophysical properties and voltage-dependent activation/inactivation could only be assessed by using low-throughput, manual patch clamp recording techniques. In recent years, automated patch clamp (APC) platforms have drastically increased in throughput. In contrast to their broad utilization in compound screening, APC platforms have rarely been used for mechanism of action studies, in large part due to the lack of sophisticated, scalable analysis methods for processing the large amount of data generated by APC platforms. In the current study, we developed a highly efficient and scalable software workflow to overcome this challenge. This method, to our knowledge the first of its kind, enables automated curve fitting and complex analysis of compound effects. Using voltage-gated sodium channels as an example, we were able to immediately assess the effects of test compounds on a spectrum of biophysical properties, including peak current, voltage-dependent steady state activation/inactivation, and time constants of activation and fast inactivation. Overall, this automated data analysis method provides a novel solution for in-depth analysis of large-scale APC data, and thus will significantly impact ion channel research and drug discovery.


Asunto(s)
Análisis de Datos , Fenómenos Electrofisiológicos , Electrofisiología , Canales Iónicos , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA