Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 362: 142727, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964722

RESUMEN

Efficient dewatering of sewage sludge is an energy- and carbon-saving procedure for sludge treatment in wastewater treatment facilities. The ultrasound-coupled divalent iron ion activated persulfate process can effectively promote sludge dewatering and improve organic substance content. Under the action of ultrasound (US 50 w/L), divalent iron ions (Fe2+) 200 mg/g (TS), and persulfate (PDS) 200 mg/g (TS) for 60 min, the capillary suction time (CST) was reduced by 79.74%, and the moisture content of the dewatered sludge cake reached 56.51 wt%. The organic carbon content of treated sludge was also four times higher than the original sludge and types were richer in short-chain volatile species in US/Fe2+/PDS. Moreover, the correlation analysis found that the relationship of between CST and SV30, Zeta and lactate dehydrogenase (LDH) were positive correlation, and the relationship of SCOD and TC were positively correlated with the PN (SB-EPS). Mechanistic studies showed that the US/Fe2+/PDS system could produce oxygen activators by US coupling Fe2+ to strengthen the effect of activated PDS strongly, while the sulfate radicals (SO4·-) radical was a dominant role. The cracking mechanism is divided into two pathways effectively degraded the macromolecule EPS into a small-molecule acid and further reduced the water-holding interfacial affinity as follow: (1) the radical path dominated by hydroxyl radicals (·OH), SO4·-, and superoxide radical (O2·-); (2) the non-radicals dominated by monoclinic oxygen (1O2). Afterwards, the electrostatic force and interfacial free energy were reduced, resulting in enhanced self-flocculation and mobility to enhanced dewaterability. These findings demonstrated the US/Fe2+/PDS system had significant advantages in sludge cracking and provided theoretical support for its practical application.


Asunto(s)
Hierro , Aguas del Alcantarillado , Compuestos de Sodio , Sulfatos , Eliminación de Residuos Líquidos , Aguas Residuales , Sulfatos/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Hierro/química , Compuestos de Sodio/química , Aguas Residuales/química
2.
Adv Sci (Weinh) ; 11(15): e2307063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342624

RESUMEN

The high incidence of restenosis after angioplasty has been the leading reason for the recurrence of coronary heart disease, substantially increasing the mortality risk for patients. However, current anti-stenosis drug-eluting stents face challenges due to their limited functions and long-term safety concerns, significantly compromising their therapeutic effect. Herein, a stent-free anti-stenosis drug coating (denoted as Cur-NO-Gel) based on a peptide hydrogel is proposed. This hydrogel is formed by assembling a nitric oxide (NO) donor-peptide conjugate as a hydrogelator and encapsulating curcumin (Cur) during the assembly process. Cur-NO-Gel has the capability to release NO upon ß-galactosidase stimulation and gradually release Cur through hydrogel hydrolysis. The in vitro experiments confirmed that Cur-NO-Gel protects vascular endothelial cells against oxidative stress injury, inhibits cellular activation of vascular smooth muscle cells, and suppresses adventitial fibroblasts. Moreover, periadventitial administration of Cur-NO-Gel in the angioplasty model demonstrate its ability to inhibit vascular stenosis by promoting reendothelialization, suppressing neointima hyperplasia, and preventing constrictive remodeling. Therefore, the study provides proof of concept for designing a new generation of clinical drugs in angioplasty.


Asunto(s)
Curcumina , Hidrogeles , Humanos , Constricción Patológica , Células Endoteliales , Angioplastia , Curcumina/farmacología , Curcumina/uso terapéutico , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA