Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(4): 1052-1068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934782

RESUMEN

Drought has a severe impact on the quality and yield of cotton. Deciphering the key genes related to drought tolerance is important for understanding the regulation mechanism of drought stress and breeding drought-tolerant cotton cultivars. Several studies have demonstrated that NAC transcription factors are crucial in the regulation of drought stress, however, the related functional mechanisms are still largely unexplored. Here, we identified that NAC transcription factor GhNAC4 positively regulated drought stress tolerance in cotton. The expression of GhNAC4 was significantly induced by abiotic stress and plant hormones. Silencing of GhNAC4 distinctly impaired the resistance to drought stress and overexpressing GhNAC4 in cotton significantly enhanced the stress tolerance. RNA-seq analysis revealed that overexpression of GhNAC4 enriched the expression of genes associated with the biosynthesis of secondary cell walls and ribosomal proteins. We confirmed that GhNAC4 positively activated the expressions of GhNST1, a master regulator reported previously in secondary cell wall formation, and two ribosomal protein-encoding genes GhRPL12 and GhRPL18p, by directly binding to their promoter regions. Overexpression of GhNAC4 promoted the expression of downstream genes associated with the secondary wall biosynthesis, resulting in enhancing secondary wall deposition in the roots, and silencing of GhRPL12 and GhRPL18p significantly impaired the resistance to drought stress. Taken together, our study reveals a novel pathway mediated by GhNAC4 that promotes secondary cell wall biosynthesis to strengthen secondary wall development and regulates the expression of ribosomal protein-encoding genes to maintain translation stability, which ultimately enhances drought tolerance in cotton.


Asunto(s)
Resistencia a la Sequía , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Ribosómicas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteostasis , Fitomejoramiento , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Sequías , Gossypium/genética , Gossypium/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 115(2): 452-469, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37026387

RESUMEN

Plasma membrane represents a critical battleground between plants and attacking microbes. Necrosis-and-ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), cytolytic toxins produced by some bacterial, fungal and oomycete species, are able to target on lipid membranes by binding eudicot plant-specific sphingolipids (glycosylinositol phosphorylceramide) and form transient small pores, causing membrane leakage and subsequent cell death. NLP-producing phytopathogens are a big threat to agriculture worldwide. However, whether there are R proteins/enzymes that counteract the toxicity of NLPs in plants remains largely unknown. Here we show that cotton produces a peroxisome-localized enzyme lysophospholipase, GhLPL2. Upon Verticillium dahliae attack, GhLPL2 accumulates on the membrane and binds to V. dahliae secreted NLP, VdNLP1, to block its contribution to virulence. A higher level of lysophospholipase in cells is required to neutralize VdNLP1 toxicity and induce immunity-related genes expression, meanwhile maintaining normal growth of cotton plants, revealing the role of GhLPL2 protein in balancing resistance to V. dahliae and growth. Intriguingly, GhLPL2 silencing cotton plants also display high resistance to V. dahliae, but show severe dwarfing phenotype and developmental defects, suggesting GhLPL2 is an essential gene in cotton. GhLPL2 silencing results in lysophosphatidylinositol over-accumulation and decreased glycometabolism, leading to a lack of carbon sources required for plants and pathogens to survive. Furthermore, lysophospholipases from several other crops also interact with VdNLP1, implying that blocking NLP virulence by lysophospholipase may be a common strategy in plants. Our work demonstrates that overexpressing lysophospholipase encoding genes have great potential for breeding crops with high resistance against NLP-producing microbial pathogens.


Asunto(s)
Lisofosfolipasa , Verticillium , Lisofosfolipasa/genética , Gossypium/genética , Peroxisomas , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas
3.
Plant Physiol ; 194(1): 106-123, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37427813

RESUMEN

ß-1,3-glucanase functions in plant physiological and developmental processes. However, how ß-1,3-glucanase participates in cell wall development remains largely unknown. Here, we answered this question by examining the role of GhGLU18, a ß-1,3-glucanase, in cotton (Gossypium hirsutum) fibers, in which the content of ß-1,3-glucan changes dynamically from 10% of the cell wall mass at the onset of secondary wall deposition to <1% at maturation. GhGLU18 was specifically expressed in cotton fiber with higher expression in late fiber elongation and secondary cell wall (SCW) synthesis stages. GhGLU18 largely localized to the cell wall and was able to hydrolyze ß-1,3-glucan in vitro. Overexpression of GhGLU18 promoted polysaccharide accumulation, cell wall reconstruction, and cellulose synthesis, which led to increased fiber length and strength with thicker cell walls and shorter pitch of the fiber helix. However, GhGLU18-suppressed cotton resulted in opposite phenotypes. Additionally, GhGLU18 was directly activated by GhFSN1 (fiber SCW-related NAC1), a NAC transcription factor reported previously as the master regulator in SCW formation during fiber development. Our results demonstrate that cell wall-localized GhGLU18 promotes fiber elongation and SCW thickening by degrading callose and enhancing polysaccharide metabolism and cell wall synthesis.


Asunto(s)
Gossypium , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Fibra de Algodón , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Physiol ; 193(3): 1816-1833, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37527491

RESUMEN

Cell elongation is a fundamental process for plant growth and development. Studies have shown lipid metabolism plays important role in cell elongation; however, the related functional mechanisms remain largely unknown. Here, we report that cotton (Gossypium hirsutum) LIPID TRANSFER PROTEIN4 (GhLTP4) promotes fiber cell elongation via elevating ceramides (Cers) content and activating auxin-responsive pathways. GhLTP4 was preferentially expressed in elongating fibers. Over-expression and down-regulation of GhLTP4 led to longer and shorter fiber cells, respectively. Cers were greatly enriched in GhLTP4-overexpressing lines and decreased dramatically in GhLTP4 down-regulating lines. Moreover, auxin content and transcript levels of indole-3-acetic acid (IAA)-responsive genes were significantly increased in GhLTP4-overexpressing cotton fibers. Exogenous application of Cers promoted fiber elongation, while NPA (N-1-naphthalic acid, a polar auxin transport inhibitor) counteracted the promoting effect, suggesting that IAA functions downstream of Cers in regulating fiber elongation. Furthermore, we identified a basic helix-loop-helix transcription factor, GhbHLH105, that binds to the E-box element in the GhLTP4 promoter region and promotes the expression of GhLTP4. Suppression of GhbHLH105 in cotton reduced the transcripts level of GhLTP4, resulting in smaller cotton bolls and decreased fiber length. These results provide insights into the complex interactions between lipids and auxin-signaling pathways to promote plant cell elongation.


Asunto(s)
Fibra de Algodón , Gossypium , Gossypium/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Lípidos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant J ; 111(2): 374-390, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35506325

RESUMEN

Global climate changes cause an increase of abiotic and biotic stresses that tremendously threaten the world's crop security. However, studies on broad-spectrum response pathways involved in biotic and abiotic stresses are relatively rare. Here, by comparing the time-dependent transcriptional changes and co-expression analysis of cotton (Gossypium hirsutum) root tissues under abiotic and biotic stress conditions, we discovered the common stress-responsive genes and stress metabolism pathways under different stresses, which included the circadian rhythm, thiamine and galactose metabolism, carotenoid, phenylpropanoid, flavonoid, and zeatin biosynthesis, and the mitogen-activated protein kinase signaling pathway. We found that thiamine metabolism was an important intersection between abiotic and biotic stresses; the key thiamine synthesis genes, GhTHIC and GhTHI1, were highly induced at the early stage of stresses. We confirmed that thiamine was crucial and necessary for cotton growth and development, and its deficiency could be recovered by exogenous thiamine supplement. Furthermore, we revealed that exogenous thiamine enhanced stress tolerance in cotton via increasing calcium signal transduction and activating downstream stress-responsive genes. Overall, our studies demonstrated that thiamine played a crucial role in the tradeoff between plant health and stress resistance. The thiamine deficiency caused by stresses could transiently induce upregulation of thiamine biosynthetic genes in vivo, while it could be totally salvaged by exogenous thiamine application, which could significantly improve cotton broad-spectrum stress tolerance and enhance plant growth and development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Tiamina/metabolismo
6.
Opt Lett ; 48(10): 2676-2679, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186738

RESUMEN

Mode-locked lasers with ultra-narrow spectral widths and durations of hundreds of picoseconds can be versatile light sources for a variety of newly emergent applications. However, less attention seems to be given to mode-locked lasers that generate narrow spectral bandwidths. We demonstrate a passively mode-locked erbium-doped fiber laser (EDFL) system that relies on a standard fiber Bragg grating (FBG) and the nonlinear polarization rotation (NPR) effect. This laser achieves the longest reported pulse width (to the best of our knowledge) of 143 ps based on NPR and an ultra-narrow spectral bandwidth of 0.017 nm (2.13 GHz) under Fourier transform-limited conditions. The average output power is 2.8 mW, and the single-pulse energy is 0.19 nJ at a pump power of 360 mW.

7.
Ecotoxicol Environ Saf ; 249: 114348, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508798

RESUMEN

Atrazine (ATR), a widely used triazine herbicide, is an environmental endocrine disruptor that can cause health problems. However, whether there are multi/trans-generational reproductive impacts of ATR have not been studied. Therefore, in this study, Caenorhabditis elegans was used as a preferable model organism to identify the multi/trans-generational reproductive toxicity of ATR. Only parental C.elegans (P0) were exposed to different concentrations (0.0004-40 mg/L) for 48 h and the subsequent offspring (F1-F5) were grown under ATR-free conditions and ATR conditions.The results showed that ATR exposure during P0 decreased fecundity, including a reduction in fertilized eggs, oocytes, and ovulation rate, delayed gonadal development, and decreased the relative area of gonad arm and germ cell number. Furthermore, continuous ATR exposure (P0-F5) causes a significant increase in reproductive toxicity in subsequent generations, although no significant toxicity occurred in the P0 generation after exposure to environmental-related concentrations, suggesting that ATR exposure might have cumulative effects. Likewise, parental exposure to ATR caused transgenerational toxicity impairments. Interestingly, only reproductive toxicity, not development toxicity, was transmitted to several generations (F1-F4), and the F2 generation showed the most notable changes. QRT-PCR results showed that genes expression related to DNA methylation 6 mA (damt-1, nmad-1) and histone H3 methylation (mes-4, met-2, set-25, set-2, and utx-1) can also be passed on to offspring. The function of H3K4 and H3K9 methylation were explored by using loss-of-function mutants for set-2, set-25, and met-2. Transmissible reproductive toxicity was absent in met-2(n4256), set-2(ok952), and set-25(n5021) mutants, which suggests that the histone methyltransferases H3K4 and H3K9 activity are indispensable for the transgenerational effect of ATR. Finally, the downstream genes of DNA methylation and histone H3 methylation were determined. ATR upregulated the expression of ZC317.7, hsp-6, and hsp-60. Mitochondrial stress in parental generation dependent transcription 6 mA modifiers may establish these epigenetic marks in progeny.


Asunto(s)
Atrazina , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Metilación de ADN , Herbicidas , Reproducción , Animales , Femenino , Atrazina/toxicidad , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Metilación de ADN/efectos de los fármacos , Herbicidas/toxicidad , Histona Demetilasas/metabolismo , Histonas/genética , Reproducción/efectos de los fármacos , Reproducción/genética
8.
Ecotoxicol Environ Saf ; 253: 114680, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857914

RESUMEN

Fenitrothion (FNT), an organophosphorus insecticide, is widely detected in the living environment. The reproductive and endocrine toxicity of FNT to biological communities has been ever reported, but potential mechanism and reproductive toxicity dose effect remain unclear. In our study, we constructed Caenorhabditis elegans model to analyze the reproductive toxicity mechanism of FNT based on metabolomics and evaluated its reproductive toxicity dose effect using benchmark dose (BMD)method. Our results showed that FNT exposure significantly reduced brood size, number of germ cells, and delayed gonadal development in nematodes. Non-targeted metabolomics revealed that FNT exposure caused significant metabolic disturbances in nematodes, leading to a significant reduction in the synthesis of cortisol and melatonin, and the latter played a mediating role in the effects of FNT on number of germ cells. We further found that the levels of these two hormones were significantly negative correlated with the expression of the androgen receptor nhr-69 and affected the meiosis of germ cells by regulating the nhr-69/ fbf-1/2 /gld-3 /fog-1/3 pathway. Meanwhile, the study found the BMDL10s for N2 and him-5 mutant were 0.411 µg/L by number of germ cells and 0.396 µg/L by number of germ cells in the meiotic zone, respectively, providing a more protective reference dose for ecological risk assessment of FNT. This study suggested that FNT can affect androgen receptor expression by inhibiting cortisol and melatonin secretion, which further mediate the meiotic pathway to affect sperm formation and exert reproductive toxicity, and provides a basis for setting reproductive toxicity limits for FNT.


Asunto(s)
Proteínas de Caenorhabditis elegans , Insecticidas , Melatonina , Animales , Masculino , Fenitrotión/toxicidad , Insecticidas/toxicidad , Caenorhabditis elegans , Receptores Androgénicos , Melatonina/farmacología , Hidrocortisona , Compuestos Organofosforados , Semen , Meiosis , Proteínas de Caenorhabditis elegans/metabolismo
9.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677680

RESUMEN

To improve the compatibility between flame retardant and epoxy resin (EP) matrix, amino phenyl copper phosphate-9, 10-dihydro-9-oxygen-10-phospha-phenanthrene-10-oxide (CuPPA-DOPO) is synthesized through surface grafting, which is blended with EP matrix to prepare EP/CuPPA-DOPO composites. The amorphous structure of CuPPA-DOPO is characterized by X-ray diffraction and Fourier-transform infrared spectroscopy. Scanning electron microscope (SEM) images indicate that the agglomeration of hybrids is improved, resisting the intense intermolecular attractions on account of the acting force between CuPPA and DOPO. The results of thermal analysis show that CuPPA-DOPO can promote the premature decomposition of EP and increase the residual amount of EP composites. It is worth mentioning that EP/6 wt% CuPPA-DOPO composites reach UL-94 V-1 level and limiting oxygen index (LOI) of 32.6%. Meanwhile, their peak heat release rate (PHRR), peak smoke production release (PSPR) and CO2 production (CO2P) are decreased by 52.5%, 26.1% and 41.4%, respectively, compared with those of EP. The inhibition effect of CuPPA-DOPO on the combustion of EP may be due to the release of phosphorus and ammonia free radicals, as well as the catalytic charring ability of metal oxides and phosphorus phases.

10.
Molecules ; 28(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37110556

RESUMEN

To alleviate the fire hazard of epoxy resin (EP), layered ammonium vanadium oxalate-phosphate (AVOPh) with the structural formula of (NH4)2[VO(HPO4)]2(C2O4)·5H2O is synthesized using the hydrothermal method and mixed into an EP matrix to prepare EP/AVOPh composites. The thermogravimetric analysis (TGA) results show that AVOPh exhibits a similar thermal decomposition temperature to EP, which is suitable for flame retardancy for EP. The incorporation of AVOPh nanosheets greatly improves the thermal stability and residual yield of EP/AVOPh composites at high temperatures. The residue of pure EP is 15.3% at 700 °C. In comparison, the residue of EP/AVOPh composites is increased to 23.0% with 8 wt% AVOPh loading. Simultaneously, EP/6 wt% AVOPh composites reach UL-94 V1 rating (t1 + t2 =16 s) and LOI value of 32.8%. The improved flame retardancy of EP/ AVOPh composites is also proven by the cone calorimeter test (CCT). The results of CCT of EP/8 wt% AVOPh composites show that the peak heat release rate (PHHR), total smoke production (TSP), peak of CO production (PCOP), and peak of CO2 production (PCO2P) decrease by 32.7%, 20.4%, 37.1%, and 33.3% compared with those of EP, respectively. This can be attributed to the lamellar barrier, gas phase quenching effect of phosphorus-containing volatiles, the catalytic charring effect of transition metal vanadium, and the synergistic decomposition of oxalic acid structure and charring effect of phosphorus phase, which can insulate heat and inhibit smoke release. Based on the experimental data, AVOPh is expected to serve as a new high-efficiency flame retardant for EP.

11.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838870

RESUMEN

Tamarind shell is rich in flavonoids and exhibits good biological activities. In this study, we aimed to analyze the chemical composition of tamarind shell extract (TSE), and to investigate antioxidant capacity of TSE in vitro and in vivo. The tamarind shells were extracted with 95% ethanol refluxing extraction, and chemical constituents were determined by ultra-performance chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). The free radical scavenging activity of TSE in vitro was evaluated using the oxygen radical absorbance capacity (ORAC) method. The antioxidative effects of TSE were further assessed in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated ADTC5 cells and tert-butyl hydroperoxide (t-BHP)-exposed zebrafish. A total of eight flavonoids were detected in TSE, including (+)-catechin, taxifolin, myricetin, eriodictyol, luteolin, morin, apigenin, and naringenin, with the contents of 5.287, 8.419, 4.042, 6.583, 3.421, 4.651, 0.2027, and 0.6234 mg/g, respectively. The ORAC assay revealed TSE and these flavonoids had strong free radical scavenging activity in vitro. In addition, TSE significantly decreased the ROS and MDA levels but restored the SOD activity in AAPH-treated ATDC5 cells and t-BHP-exposed zebrafish. The flavonoids also showed excellent antioxidative activities against oxidative damage in ATDC5 cells and zebrafish. Overall, the study suggests the free radical scavenging capacity and antioxidant potential of TSE and its primary flavonoids in vitro and in vivo and will provide a theoretical basis for the development and utilization of tamarind shell.


Asunto(s)
Antioxidantes , Tamarindus , Animales , Antioxidantes/química , Pez Cebra , Cromatografía Liquida , Espectrometría de Masas en Tándem , Estrés Oxidativo , Flavonoides/química , Extractos Vegetales/química , Radicales Libres/farmacología
12.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513406

RESUMEN

Silica aerogels are considered as the distinguished materials of the future due to their extremely low thermal conductivity, low density, and high surface area. They are widely used in construction engineering, aeronautical domains, environmental protection, heat storage, etc. However, their fragile mechanical properties are the bottleneck restricting the engineering application of silica aerogels. This review briefly introduces the synthesis of silica aerogels, including the processes of sol-gel chemistry, aging, and drying. The effects of different silicon sources on the mechanical properties of silica aerogels are summarized. Moreover, the reaction mechanism of the three stages is also described. Then, five types of polymers that are commonly used to enhance the mechanical properties of silica aerogels are listed, and the current research progress is introduced. Finally, the outlook and prospects of the silica aerogels are proposed, and this paper further summarizes the methods of different polymers to enhance silica aerogels.

13.
BMC Plant Biol ; 22(1): 357, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869418

RESUMEN

BACKGROUND: In eudicots, germination begins with water uptake by the quiescent dry seed and is greatly related to the permeability of micropyle enriched callose layers. Once imbibition starts, seeds undergo a cascade of physiological, biochemical, and molecular events to initiate cellular activities. However, the effects of callose on water uptake and following seed metabolic events during germination are largely unknown. Cotton (Gossypium hirsutum) is a eudicot plant with natural fiber and edible oil production for humans. Here, we addressed this question by examining the role of GhGLU19, a gene encoding ß-1,3-glucanase, in cotton seed germination. RESULTS: GhGLU19 belongs to subfamily B and was expressed predominately in imbibed seeds and early seedlings. Compared to wild type, GhGLU19-suppressing and GhGLU19-overexpressing transgenic cotton lines showed the higher and lower seed germination percentage, respectively. Callose was enriched more at inner integument (ii) than that in embryo and seed coat in cotton seeds. In GhGLU19-suppressing lines, callose at ii of cotton seeds was greatly increased and brought about a prolonged water uptake process during imbibition. Both proteomic and transcriptomic analysis revealed that contrary to GhGLU19-overexpressing lines, the glycolysis and pyruvate metabolism was decreased, and abscisic acid (ABA) biosynthesis related genes were downregulated in imbibed seeds of GhGLU19-suppressing lines. Also, endogenous ABA was significantly decreased in GhGLU19-suppressing line while increased in GhGLU19-overexpressing line. CONCLUSIONS: Our results demonstrate that suppression of GhGLU19 improves cotton seed germination via accumulating callose of inner integument, modulating glycolysis and pyruvate metabolism, and decreasing ABA biosynthesis. This study provides a potential way for improving germination percentage in cotton seed production, and other eudicot crops.


Asunto(s)
Germinación , Gossypium , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/fisiología , Gossypium/metabolismo , Humanos , Proteómica , Piruvatos/metabolismo , Piruvatos/farmacología , Semillas/metabolismo , Agua/metabolismo
14.
Pediatr Res ; 91(3): 565-571, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33790413

RESUMEN

BACKGROUND: Lethal neonatal rigidity and multifocal seizure syndrome (RMFSL) is caused by variants in BRAT1 (BRCA1-associated protein required for ATM activation-1). However, the molecular mechanism of RMFSL is still unclear. METHODS: An RMFSL infant was recruited and the peripheral blood samples from his trio-family were collected. The genomic DNA was extracted, and then the whole-exome sequencing was performed. The expression of BRAT1 was analyzed by Western blotting. The subcellular localization of BRAT1 and MitoSOX (mitochondrial superoxide level) was investigated by confocal microscopy. The RNA samples were obtained from transfected cells, and then the RNA sequencing was performed. RESULTS: In this study, a novel homozygous BRAT1 variant c.233G > C with amino acid change of R with P at residue 78 (R78P) was identified. This variant altered the peptide structure and subcellular localization, as well as the expression in vitro. However, R78P did not alter the ability of BRAT1 to downregulate MitoSOX in mitochondria. Meanwhile, R78P BRAT1 was positively correlated with temporal lobe epilepsy, autosomal recessive primary microcephaly, defective/absent horizontal voluntary eye movements, and neuron apoptotic process as indicated by gene set enrichment analysis (GSEA). CONCLUSIONS: The BRAT1 variant spectrum has been expanded, which will be helpful for genetic counseling. We also explored the molecular mechanism altered by R78P, which will provide a better understanding of the pathogenesis of RMFSL. IMPACT: The detailed course of an infant with lethal neonatal RMFSL was depicted. A novel disease-causing variant R78P in BRAT1 for lethal neonatal RMFSL was identified. R78P led to reduced BRAT1 expression and nuclear localization in vitro. R78P did not alter the ability of BRAT1 to downregulate MitoSOX in the mitochondria. The variant R78P in BRAT1 was positively correlated with temporal lobe epilepsy, autosomal recessive primary microcephaly, defective/absent horizontal voluntary eye movements, and neuron apoptotic process as indicated by GSEA.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Microcefalia , Humanos , Lactante , Recién Nacido , Microcefalia/genética , Mutación , Proteínas Nucleares/genética , Linaje , Convulsiones/genética
15.
BMC Pediatr ; 22(1): 74, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109800

RESUMEN

BACKGROUND: Combined oxidative phosphorylation deficiency 26 (COXPD26) is an autosomal recessive disorder characterized by early onset, developmental delay, gastrointestinal dysfunction, shortness of breath, exercise intolerance, hypotonia and muscle weakness, neuropathy, and spastic diplegia. This disease is considered to be caused by compound heterozygous mutations in the TRMT5 gene. CASE PRESENTATION: In this study, we report a female child with COXPD26 manifesting as shortness of breath, gastrointestinal dysmotility, severe developmental delay, muscle hypotonia and weakness, exercise intolerance, renal and hepatic defects, and recurrent seizures with spastic diplegia. Interestingly, the hepatic feature was first observed in a COXPD26 patient. Medical exome sequencing with high coverage depth was employed to identify potential genetic variants in the patient. Novel compound heterozygous mutations of the TRMT5 gene were detected, which were c.881A>C (p.E294A) from her mother and c.1218G>C (p.Q406H) and c.1481C>T (p.T494M) from her father. CONCLUSION: The newly emerged clinical features and mutations of this patient provide useful information for further exploration of genotype-phenotype correlations in COXPD26.


Asunto(s)
Parálisis Cerebral , Enfermedades Mitocondriales , China , Disnea , Femenino , Humanos , Hipotonía Muscular , Mutación , Linaje , ARNt Metiltransferasas/genética
16.
Planta ; 255(1): 7, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845531

RESUMEN

MAIN CONCLUSION: This study identified the historical geoclimatic factors which caused low genetic diversity and strong phylogeographic structure in a cryptoviviparous mangrove. The phylogeographic pattern was used to suggest conservation actions. Phylogeographic studies are used to understand the spatial distribution and evolution of genetic diversity, and have major conservation implications, especially for threatened taxa like the mangroves. This study aimed to assess the phylogeographic pattern of Aegiceras corniculatum, a cryptoviviparous mangrove, across its distribution range in the Indo-West Pacific (IWP) region. We genotyped 398 samples, collected from 37 populations, at four chloroplast DNA (cpDNA) loci, and identified the influence of historical processes on the contemporary population structure of the species. Low genetic diversity at the population level was observed. The evolutionary relationship between 12 cpDNA haplotypes suggested a strong phylogeographic structure, which was further validated by the clustering algorithms and proportioning of maximum variation among hierarchical population groups. The magnitude and direction of historical gene flow indicated that the species attained its wide distribution from its likely ancestral area of the Malay Archipelago. The divergence time estimates of the haplotypes indicated that the geoclimatic changes during the Pleistocene, especially the glacial sea-level changes and emergence of landmasses, hindered genetic exchange and created genetic differentiation between the phylogenetic groups. The species overwintered the last glacial maxima in multiple refugia in the IWP, as identified by the environmental niche modelling. Overall, our findings indicated that ancient glacial vicariance had influenced the present genetic composition of A. corniculatum, which was maintained by the current demographic features of this region. We discussed how these findings can be used to prioritize areas for conservation actions, restore disturbed habitats and prevent further genetic erosion.


Asunto(s)
Variación Genética , Primulaceae , ADN de Cloroplastos/genética , Haplotipos/genética , Filogenia , Filogeografía , Primulaceae/genética
17.
FASEB J ; 34(8): 10998-11014, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32619083

RESUMEN

Chronic stress-evoked depression has been implied to associate with the decline of adult hippocampal neurogenesis. Caffeine has been known to combat stress-evoked depression. Herein, we aim to investigate whether the protective effect of caffeine on depression is related with improving adult hippocampus neurogenesis and explore the mechanisms. Mouse chronic water immersion restraint stress (CWIRS) model, corticosterone (CORT)-established cell stress model, a coculture system containing CORT-treated BV-2 cells and hippocampal neural stem cells (NSCs) were utilized. Results showed that CWIRS caused obvious depressive-like disorders, abnormal 5-HT signaling, and elevated-plasma CORT levels. Notably, microglia activation-evoked brain inflammation and inhibited neurogenesis were also observed in the hippocampus of stressed mice. In comparison, intragastric administration of caffeine (10 and 20 mg/kg, 28 days) significantly reverted CWIRS-induced depressive behaviors, neurogenesis recession and microglia activation in the hippocampus. Further evidences from both in vivo and in vitro mechanistic experiments demonstrated that caffeine treatment significantly suppressed microglia activation via the A2AR/MEK/ERK/NF-κB signaling pathway. The results suggested that CORT-induced microglia activation contributes to stress-mediated neurogenesis recession. The antidepression effect of caffeine was associated with unlocking microglia activation-induced neurogenesis inhibition.


Asunto(s)
Cafeína/farmacología , Corticosterona/farmacología , Hipocampo/efectos de los fármacos , Microglía/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Animales , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Ratones , Microglía/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos
18.
BMC Plant Biol ; 20(1): 289, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571222

RESUMEN

BACKGROUND: Sea island cotton (Gossypium barbadense) has markedly superior high quality fibers, which plays an important role in the textile industry and acts as a donor for upland cotton (G. hirsutum) fiber quality improvement. The genetic characteristics analysis and the identification of key genes will be helpful to understand the mechanism of fiber development and breeding utilization in sea island cotton. RESULTS: In this study, 279 sea island cotton accessions were collected from different origins for genotyping and phenotyping fiber quality traits. A set of 6303 high quality single nucleotide polymorphisms (SNPs) were obtained by high-density CottonSNP80K array. The population characteristics showed that the sea island cotton accessions had wide genetic diversity and were clustered into three groups, with Group1 closely related to Menoufi, an original sea island cotton landrace, and Group2 and Group3 related to widely introduced accessions from Egypt, USA and Former Soviet Union. Further, we used 249 accessions and evaluated five fiber quality traits under normal and salt environments over 2 years. Except for fiber uniformity (FU), fiber length (FL) and fiber elongation (FE) were significantly decreased in salt conditions, while fiber strength (FS) and fiber micronaire (MIC) were increased. Based on 6303 SNPs and genome-wide association study (GWAS) analysis, a total of 34 stable quantitative trait loci (QTLs) were identified for the five fiber quality traits with 25 detected simultaneously under normal and salt environments. Gene Ontology (GO) analysis indicated that candidate genes in the 25 overlapped QTLs were enriched mostly in "cellular and biological process". In addition, "xylem development" and "response to hormone" pathways were also found. Haplotype analyses found that GB_A03G0335 encoding an E3 ubiquitin-protein ligase in QTL TM6004 had SNP variation (A/C) in gene region, was significantly correlated with FL, FS, FU, and FE, implying a crucial role in fiber quality. CONCLUSIONS: The present study provides a foundation for genetic diversity of sea island cotton accessions and will contribute to fiber quality improvement in breeding practice.


Asunto(s)
Fibra de Algodón , Genes de Plantas , Gossypium/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple
19.
Environ Res ; 191: 110015, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32818497

RESUMEN

Few prospective cohort studies have investigated associations between environmental tobacco smoke (ETS) and other cancer sites, in addition to lung cancer. We assessed these associations in a population-based prospective cohort study started from 2008 to 2011 with average of 9.1 years of follow-up, in Minhang district, Shanghai, China. The study included a total of 23,415 participants (8388 men, 15,027 women) and 205,515 person-years. Epidemiological data were collected by a standardized questionnaire including ETS exposure. Newly diagnosed patients with primary cancers and deaths were identified by record linkage system with the Shanghai Cancer Registry and Shanghai Vital Statistics. Hazard ratios (HRs) and their 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression models, adjusting for potential confounders. During the study period, a total of 1462 patients with diagnoses of primary cancers were identified. Among all participants and non-smokers, ETS was associated with an increased risk of all smoking-related cancers (all: adjusted HR: 1.23, 95% CI: 1.05-1.43 and non-smokers: 1.24, 1.02-1.49), lung cancer (1.29, 0.98-1.71 and 1.27, 0.91-1.77), and stomach cancer (1.86, 1.21-2.85 and 1.75, 1.05-2.91), respectively. Furthermore, associations for lung and stomach cancers were the strongest among non-smoking females. The joint effects of both ETS and active smoking were strongest for all cancers, all smoking-related cancers, lung cancer, and stomach cancer. No clear interactions were observed. These results suggest that ETS exposure may increase the risk of smoking-related cancers in a Chinese population. Further studies on the relationship between ETS exposure and specific cancer sites are warranted to replicate our findings.


Asunto(s)
Neoplasias , Contaminación por Humo de Tabaco , Pueblo Asiatico , China/epidemiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Neoplasias/epidemiología , Neoplasias/etiología , Estudios Prospectivos , Factores de Riesgo , Contaminación por Humo de Tabaco/efectos adversos , Contaminación por Humo de Tabaco/análisis
20.
J Sci Food Agric ; 100(2): 614-622, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31597198

RESUMEN

BACKGROUND: Lonicera japonica Thunb is a common herb in East Asia. The flower buds are usually regarded as the traditional medicinal part, while leaves and stems are considered less valuable and receive little attention. This study compared the chemical constituents and anti-inflammatory effects of the different tissues in L. japonica Thunb for the first time. RESULTS: Thirty compounds were identified by ultra-performance liquid chromatography-photodiode detector-quadrupole / time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS/MS) analysis. Hydroxycinnamic acids, flavonoids, and iridoids were identified as the major components. The flower buds (FLJ), leaves (LLJ), and stems (SLJ) of L. japonica Thunb showed strong similarities in chemical components. The LLJ contained higher levels of hydroxycinnamic acids and flavonoids than the FLJ and SLJ. Furthermore, FLJ, LLJ, and SLJ exhibited potent anti-inflammatory activity in croton oil-induced ear edema and carrageenan-induced paw edema assays in mice. Moreover, FLJ, LLJ, and SLJ showed a cytoprotective effect on lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. Lipopolysaccharide-induced increases in nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) were suppressed by treatments of FLJ, LLJ, and SLJ, respectively. The LLJ possessed a stronger anti-inflammatory effect than the FLJ. CONCLUSION: Leaves and stems of L. japonica Thunb have chemical components and anti-inflammatory properties similar to flower buds, and may become alternative or supplementary sources of flower buds. © 2019 Society of Chemical Industry.


Asunto(s)
Antiinflamatorios/química , Edema/tratamiento farmacológico , Lonicera/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Animales , Antiinflamatorios/administración & dosificación , Carragenina/efectos adversos , Cromatografía Líquida de Alta Presión , Edema/inducido químicamente , Edema/genética , Edema/inmunología , Flavonoides/administración & dosificación , Flavonoides/química , Flores/química , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Ratones , Hojas de la Planta/química , Tallos de la Planta/química , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA