Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genome Res ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129076

RESUMEN

Mammalian sperm show an unusual and heavily compacted genomic packaging state. In addition to its role in organizing the compact and hydrodynamic sperm head, it has been proposed that sperm chromatin architecture helps to program gene expression in the early embryo. Scores of genome-wide surveys in sperm have reported patterns of chromatin accessibility, nucleosome localization, histone modification, and chromosome folding. Here, we revisit these studies in light of recent reports that sperm obtained from the mouse epididymis are contaminated with low levels of cell-free chromatin. In the absence of proper sperm lysis, we readily recapitulate multiple prominent genome-wide surveys of sperm chromatin, suggesting that these profiles primarily reflect contaminating cell-free chromatin. Removal of cell-free DNA, and appropriate lysis conditions, are together required to reveal a sperm chromatin state distinct from most previous reports. Using ATAC-seq to explore relatively accessible genomic loci, we identify a landscape of open loci associated with early development and transcriptional control. Histone modification and chromosome folding profiles also strongly support the hypothesis that prior studies suffer from contamination, but technical challenges associated with reliably preserving the architecture of the compacted sperm head prevent us from confidently assaying true localization patterns for these epigenetic marks. Together, our studies show that our knowledge of chromosome packaging in mammalian sperm remains largely incomplete, and motivate future efforts to more accurately characterize genome organization in mature sperm.

2.
Mamm Genome ; 33(2): 293-311, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34724117

RESUMEN

PIWI-interacting RNAs (piRNAs), small noncoding RNAs 24-35 nucleotides long, are essential for animal fertility. They play critical roles in a range of functions, including transposable element suppression, gene expression regulation, imprinting, and viral defense. In mammals, piRNAs are the most abundant small RNAs in adult testes and the only small RNAs that direct epigenetic modification of chromatin in the nucleus. The production of piRNAs is a complex process from transcription to post-transcription, requiring unique machinery often distinct from the biogenesis of other RNAs. In mice, piRNA biogenesis occurs in specialized subcellular locations, involves dynamic developmental regulation, and displays sexual dimorphism. Furthermore, the genomic loci and sequences of piRNAs evolve much more rapidly than most of the genomic regions. Understanding piRNA biogenesis should reveal novel RNA regulations recognizing and processing piRNA precursors and the forces driving the gain and loss of piRNAs during animal evolution. Such findings may provide the basis for the development of engineered piRNAs capable of modulating epigenetic regulation, thereby offering possible single-dose RNA therapy without changing the genomic DNA. In this review, we focus on the biogenesis of piRNAs in mammalian adult testes that are derived from long non-coding RNAs. Although piRNA biogenesis is believed to be evolutionarily conserved from fruit flies to humans, recent studies argue for the existence of diverse, mammalian-specific RNA-processing pathways that convert precursor RNAs into piRNAs, perhaps associated with the unique features of mammalian piRNAs or germ cell development. We end with the discussion of major questions in the field, including substrate recognition and the birth of new piRNAs.


Asunto(s)
Epigénesis Genética , Testículo , Animales , Elementos Transponibles de ADN/genética , Masculino , Mamíferos/genética , Ratones , ARN Interferente Pequeño/genética , Testículo/metabolismo
3.
Mol Cell ; 50(1): 67-81, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23523368

RESUMEN

Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during postnatal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feedforward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals.


Asunto(s)
Meiosis , Proteínas Proto-Oncogénicas c-myb/metabolismo , ARN Interferente Pequeño/biosíntesis , Espermatogénesis , Testículo/metabolismo , Transactivadores/metabolismo , Animales , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Evolución Biológica , Pollos , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/genética , Retroalimentación Fisiológica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Fase Paquiteno , Fenotipo , Proteínas Proto-Oncogénicas c-myb/deficiencia , Proteínas Proto-Oncogénicas c-myb/genética , Testículo/crecimiento & desarrollo , Transactivadores/deficiencia , Transactivadores/genética , Transcripción Genética , Activación Transcripcional
5.
Nat Commun ; 14(1): 812, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781861

RESUMEN

Unlike PIWI-interacting RNA (piRNA) in other species that mostly target transposable elements (TEs), >80% of piRNAs in adult mammalian testes lack obvious targets. However, mammalian piRNA sequences and piRNA-producing loci evolve more rapidly than the rest of the genome for unknown reasons. Here, through comparative studies of chickens, ducks, mice, and humans, as well as long-read nanopore sequencing on diverse chicken breeds, we find that piRNA loci across amniotes experience: (1) a high local mutation rate of structural variations (SVs, mutations ≥ 50 bp in size); (2) positive selection to suppress young and actively mobilizing TEs commencing at the pachytene stage of meiosis during germ cell development; and (3) negative selection to purge deleterious SV hotspots. Our results indicate that genetic instability at pachytene piRNA loci, while producing certain pathogenic SVs, also protects genome integrity against TE mobilization by driving the formation of rapid-evolving piRNA sequences.


Asunto(s)
Pollos , Células Germinativas , Humanos , Masculino , Animales , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Pollos/genética , Pollos/metabolismo , Células Germinativas/metabolismo , Testículo/metabolismo , Elementos Transponibles de ADN/genética , ARN de Interacción con Piwi , Mamíferos/genética
6.
Poult Sci ; 100(9): 101321, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34298384

RESUMEN

Deep sequencing of RNAs has greatly aided the study of the transcriptome, enabling comprehensive gene expression profiling and the identification of novel transcripts. While messenger RNAs (mRNAs) are of the greatest interest in gene expression studies as they encode for proteins, mRNAs make up only 3 to 5% of total RNAs, with the majority comprising ribosomal RNAs (rRNAs). Therefore, applications of deep sequencing to RNA face the challenge of how to efficiently enrich mRNA species prior to library construction. Traditional methods extract mRNAs using oligo-dT primers targeting the poly-A tail on mRNAs; however, this approach is not comprehensive as it does not capture mRNAs lacking the poly-A tail or other long non-coding RNAs that we may be interested in. Alternative mRNA enrichment methods deplete rRNAs, but such approaches require species-specific probes and the commercially available kits are costly and have only been developed for a limited number of model organisms. Here, we describe a quick, cost-effective method for depleting rRNAs using custom-designed oligos, using chickens as an example species for probe design. With this optimized protocol, we have not only removed the rRNAs from total RNAs for RNA-seq library construction but also depleted rRNA fragments from ribosome-protected fragments for ribosome profiling. Currently, this is the only rRNA depletion-based method for avian species; this method thus provides a valuable resource for both the scientific community and the poultry industry.


Asunto(s)
Pollos , ARN Ribosómico , Animales , Pollos/genética , Perfilación de la Expresión Génica/veterinaria , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , ARN , Ribosomas , Análisis de Secuencia de ARN/veterinaria
7.
Nat Commun ; 12(1): 1361, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649327

RESUMEN

Sperm contributes diverse RNAs to the zygote. While sperm small RNAs have been shown to impact offspring phenotypes, our knowledge of the sperm transcriptome, especially the composition of long RNAs, has been limited by the lack of sensitive, high-throughput experimental techniques that can distinguish intact RNAs from fragmented RNAs, known to abound in sperm. Here, we integrate single-molecule long-read sequencing with short-read sequencing to detect sperm intact RNAs (spiRNAs). We identify 3440 spiRNA species in mice and 4100 in humans. The spiRNA profile consists of both mRNAs and long non-coding RNAs, is evolutionarily conserved between mice and humans, and displays an enrichment in mRNAs encoding for ribosome. In sum, we characterize the landscape of intact long RNAs in sperm, paving the way for future studies on their biogenesis and functions. Our experimental and bioinformatics approaches can be applied to other tissues and organisms to detect intact transcripts.


Asunto(s)
Secuencia Conservada/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/genética , Imagen Individual de Molécula , Espermatozoides/metabolismo , Animales , Evolución Molecular , Ontología de Genes , Humanos , Masculino , Ratones Endogámicos C57BL , ARN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Testículo/metabolismo , Transcriptoma/genética
8.
Nat Commun ; 12(1): 5970, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645830

RESUMEN

PIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.


Asunto(s)
Regiones no Traducidas 3' , Fertilidad/genética , Biosíntesis de Proteínas , ARN Interferente Pequeño/genética , Ribosomas/genética , Espermatogénesis/genética , Animales , Secuencia de Bases , Pollos , Elementos Transponibles de ADN , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fase Paquiteno , ARN Interferente Pequeño/metabolismo , Ribosomas/metabolismo , Testículo/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
9.
Nat Cell Biol ; 22(3): 353, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066908

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Cell Biol ; 22(2): 200-212, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32015435

RESUMEN

PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs essential for fertility. In adult mouse testes, most piRNAs are derived from long single-stranded RNAs lacking annotated open reading frames (ORFs). The mechanisms underlying how piRNA sequences are defined during the cleavages of piRNA precursors remain elusive. Here, we show that 80S ribosomes translate the 5'-proximal short ORFs (uORFs) of piRNA precursors. The MOV10L1/Armitage RNA helicase then facilitates the translocation of ribosomes into the uORF downstream regions (UDRs). The ribosome-bound UDRs are targeted by piRNA processing machinery, with the processed ribosome-protected regions becoming piRNAs. The dual modes of interaction between ribosomes and piRNA precursors underlie the distinct piRNA biogenesis requirements at uORFs and UDRs. Ribosomes also mediate piRNA processing in roosters and green lizards, implying that this mechanism is evolutionarily conserved in amniotes. Our results uncover a function for ribosomes on non-coding regions of RNAs and reveal the mechanisms underlying how piRNAs are defined.


Asunto(s)
Mitocondrias/genética , Precursores del ARN/genética , ARN Interferente Pequeño/genética , Ribosomas/genética , Testículo/metabolismo , Animales , Pollos , Biología Computacional/métodos , Lagartos , Masculino , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistemas de Lectura Abierta , Fase Paquiteno , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Proteínas/genética , Proteínas/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Precursores del ARN/metabolismo , ARN Interferente Pequeño/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Testículo/citología , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
11.
Elife ; 62017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28384097

RESUMEN

PIWI-interacting RNAs (piRNAs) protect the germ line by targeting transposable elements (TEs) through the base-pair complementarity. We do not know how piRNAs co-evolve with TEs in chickens. Here we reported that all active TEs in the chicken germ line are targeted by piRNAs, and as TEs lose their activity, the corresponding piRNAs erode away. We observed de novo piRNA birth as host responds to a recent retroviral invasion. Avian leukosis virus (ALV) has endogenized prior to chicken domestication, remains infectious, and threatens poultry industry. Domestic fowl produce piRNAs targeting ALV from one ALV provirus that was known to render its host ALV resistant. This proviral locus does not produce piRNAs in undomesticated wild chickens. Our findings uncover rapid piRNA evolution reflecting contemporary TE activity, identify a new piRNA acquisition modality by activating a pre-existing genomic locus, and extend piRNA defense roles to include the period when endogenous retroviruses are still infectious.


Asunto(s)
Virus de la Leucosis Aviar/genética , Virus de la Leucosis Aviar/inmunología , Pollos/inmunología , Evolución Molecular , Provirus/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA