RESUMEN
Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections.
Asunto(s)
Criptococosis , Cryptococcus neoformans , Antifúngicos/metabolismo , Antifúngicos/farmacología , Biopelículas , Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/metabolismo , Melaninas/metabolismo , Melaninas/farmacología , Pruebas de Sensibilidad Microbiana , Triterpenos , Ácido UrsólicoRESUMEN
BACKGROUND: Viral infectious diseases of poverty (vIDPs) remain a significant global health challenge. Despite their profound impact, the burden of these diseases is not comprehensively quantified. This study aims to analyze the global burden of six major vIDPs, including coronavirus disease 2019 (COVID-19), HIV/AIDS, acute hepatitis, dengue, rabies, and Ebola virus disease (EVD), using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 (GBD 2021). METHODS: Following the GBD 2021 framework, we analyzed the incidence, mortality, and disability-adjusted life years (DALYs) of the six vIDPs across 204 countries and territories from 1990 to 2021. We examined the association between the Socio-Demographic Index (SDI) and the burden of vIDPs. All estimates were reported as numbers and rates per 100,000 population, calculated using the Bayesian statistical model employed by GBD 2021, with 95% uncertainty intervals (UI). RESULTS: In 2021, vIDPs caused approximately 8.7 million deaths and 259.2 million DALYs, accounting for 12.8% and 9.0% of the global all-cause totals, respectively. Globally, the burden of vIDPs varied significantly: COVID-19 caused around 7.9 million (95% UI: 7.5, 8.4) deaths and 212.0 million (95% UI 197.9, 234.7) DALYs in 2021. Acute hepatitis had the second-highest age-standardized incidence rate, with 3411.5 (95% UI: 3201.8, 3631.3) per 100,000 population, while HIV/AIDS had a high age-standardized prevalence rate, with 483.1 (95% UI: 459.0, 511.4) per 100,000 population. Dengue incidence cases rose from 26.5 million (95% UI: 3.9, 51.9) in 1990 to 59.0 million (95% UI: 15.5, 106.9) in 2021. Rabies, although reduced in prevalence, continued to pose a significant mortality risk. EVD had the lowest overall burden but significant outbreak impacts. Age-standardized DALY rates for vIDPs were significantly negatively correlated with SDI: acute hepatitis (r = -0.8, P < 0.0001), rabies (r = -0.7, P < 0.0001), HIV/AIDS (r = -0.6, P < 0.0001), COVID-19 (r = -0.5, P < 0.0001), dengue (r = -0.4, P < 0.0001), and EVD (r = -0.2, P < 0.005). CONCLUSIONS: VIDPs pose major public health challenges worldwide, with significant regional, age, and gender disparities. The results underscore the need for targeted interventions and international cooperation to mitigate the burden of these diseases. Policymakers can use these findings to implement cost-effective interventions and improve health outcomes, particularly in regions with high or increasing burdens.
Asunto(s)
Carga Global de Enfermedades , Salud Global , Pobreza , Humanos , Salud Global/estadística & datos numéricos , Incidencia , Años de Vida Ajustados por Discapacidad , Virosis/epidemiología , COVID-19/epidemiología , COVID-19/mortalidad , Femenino , Costo de Enfermedad , Masculino , AdultoRESUMEN
The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases (HTDs), highlighting the need for advanced evidence-based management strategies. We have developed a conceptual framework aimed at alleviating the global burden of HTDs, grounded in the One Health concept. This framework refines the impact pathway and establishes systematic data-driven models to inform the adoption of evidence-based decision-making, tailored to distinct contexts. We collected extensive national-level data from authoritative public databases for the years 2010-2019. The burdens of five categories of disease causes - cardiovascular diseases, infectious respiratory diseases, injuries, metabolic diseases, and non-infectious respiratory diseases - were designated as intermediate outcome variables. The cumulative burden of these five categories, referred to as the total HTD burden, was the final outcome variable. We evaluated the predictive performance of eight models and subsequently introduced twelve intervention measures, allowing us to explore optimal decision-making strategies and assess their corresponding contributions. Our model selection results demonstrated the superior performance of the Graph Neural Network (GNN) model across various metrics. Utilizing simulations driven by the GNN model, we identified a set of optimal intervention strategies for reducing disease burden, specifically tailored to the seven major regions: East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa, North America, South Asia, and Sub-Saharan Africa. Sectoral mitigation and adaptation measures, acting upon our categories of Infrastructure & Community, Ecosystem Resilience, and Health System Capacity, exhibited particularly strong performance for various regions and diseases. Seven out of twelve interventions were included in the optimal intervention package for each region, including raising low-carbon energy use, increasing energy intensity, improving livestock feed, expanding basic health care delivery coverage, enhancing health financing, addressing air pollution, and improving road infrastructure. The outcome of this study is a global decision-making tool, offering a systematic methodology for policymakers to develop targeted intervention strategies to address the increasingly severe challenge of HTDs in the context of global warming.
RESUMEN
The One Health (OH) approach is used to control/prevent zoonotic events. However, there is a lack of tools for systematically assessing OH practices. Here, we applied the Global OH Index (GOHI) to evaluate the global OH performance for zoonoses (GOHI-Zoonoses). The fuzzy analytic hierarchy process algorithm and fuzzy comparison matrix were used to calculate the weights and scores of five key indicators, 16 subindicators, and 31 datasets for 160 countries and territories worldwide. The distribution of GOHI-Zoonoses scores varies significantly across countries and regions, reflecting the strengths and weaknesses in controlling or responding to zoonotic threats. Correlation analyses revealed that the GOHI-Zoonoses score was associated with economic, sociodemographic, environmental, climatic, and zoological factors. Additionally, the Human Development Index had a positive effect on the score. This study provides an evidence-based reference and guidance for global, regional, and country-level efforts to optimize the health of people, animals, and the environment.
RESUMEN
Background: Due to emerging issues such as global climate change and zoonotic disease pandemics, the One Health approach has gained more attention since the turn of the 21st century. Although One Health thinking has deep roots and early applications in Chinese history, significant gaps exist in China's real-world implementation at the complex interface of the human-animal-environment. Methods: We abstracted the data from the global One Health index study and analysed China's performance in selected fields based on Structure-Process-Outcome model. By comparing China to the Belt & Road and G20 countries, the advances and gaps in China's One Health performance were determined and analysed. Findings: For the selected scientific fields, China generally performs better in ensuring food security and controlling antimicrobial resistance and worse in addressing climate change. Based on the SPO model, the "structure" indicators have the highest proportion (80.00%) of high ranking and the "outcome" indicators have the highest proportion (20.00%) of low ranking. When compared with Belt and Road countries, China scores above the median in almost all indicators (16 out of 18) under the selected scientific fields. When compared with G20 countries, China ranks highest in food security (scores 72.56 and ranks 6th), and lowest in climate change (48.74, 11th). Conclusion: Our results indicate that while China has made significant efforts to enhance the application of the One Health approach in national policies, it still faces challenges in translating policies into practical measures. It is recommended that a holistic One Health action framework be established for China in accordance with diverse social and cultural contexts, with a particular emphasis on overcoming data barriers and mobilizing stakeholders both domestically and globally. Implementation mechanisms, with clarified stakeholder responsibilities and incentives, should be improved along with top-level design.
RESUMEN
BACKGROUND: One Health approach is crucial to tackling complex global public health threats at the interface of humans, animals, and the environment. As outlined in the One Health Joint Plan of Action, the international One Health community includes stakeholders from different sectors. Supported by the Bill & Melinda Gates Foundation, an academic community for One Health action has been proposed with the aim of promoting the understanding and real-world implementation of One Health approach and contribution towards the Sustainable Development Goals for a healthy planet. MAIN TEXT: The proposed academic community would contribute to generating high-quality scientific evidence, distilling local experiences as well as fostering an interconnected One Health culture and mindset, among various stakeholders on different levels and in all sectors. The major scope of the community covers One Health governance, zoonotic diseases, food security, antimicrobial resistance, and climate change along with the research agenda to be developed. The academic community will be supported by two committees, including a strategic consultancy committee and a scientific steering committee, composed of influential scientists selected from the One Health information database. A workplan containing activities under six objectives is proposed to provide research support, strengthen local capacity, and enhance global participation. CONCLUSIONS: The proposed academic community for One Health action is a crucial step towards enhancing communication, coordination, collaboration, and capacity building for the implementation of One Health. By bringing eminent global experts together, the academic community possesses the potential to generate scientific evidence and provide advice to local governments and international organizations, enabling the pursuit of common goals, collaborative policies, and solutions to misaligned interests.
Asunto(s)
Salud Global , Salud Única , Animales , Humanos , Zoonosis/prevención & control , Salud Pública , Creación de CapacidadRESUMEN
Astragalus polysaccharide is a major component of radix astragali, a vital qi-reinforcing herb medicine with favorable immune-regulating effects. In a previous animal experiment, we demonstrated that astragalus polysaccharide effectively alleviates ischemia-reperfusion injury (IRI) of cardiac muscle through the regulation of the inflammatory reactions. However, the relationship between this herb and the cohesion molecules on the cell surface remains controversial. In this study, human cardiac microvascular endothelial cells (HCMECs) were used to validate the protective effects of astragalus under an IRI scheme simulated through hypoxia/reoxygenation in vitro. The results indicated that astragalus polysaccharide inhibited the cohesion between HCMECs and polymorphonuclear leukocyte (PMN) during IRI through the downregulation of p38 MAPK signaling and the reduction of cohesive molecule expression in HCMECs.