Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 148(5): 405-425, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37409482

RESUMEN

BACKGROUND: Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS: We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS: Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS: Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Dependovirus/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Vectores Genéticos , Células Madre Pluripotentes Inducidas/metabolismo , Anticuerpos Neutralizantes , Vesículas Extracelulares/metabolismo
2.
J Nanobiotechnology ; 21(1): 89, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918874

RESUMEN

Strategies to overcome toxicity and drug resistance caused by chemotherapeutic drugs for targeted therapy against hepatocellular carcinoma (HCC) are urgently needed. Previous studies revealed that high oxidored-nitro domain-containing protein 1(NOR1) expression in HCC was associated with cisplatin (DDP) resistance. Herein, a novel dual-targeting nanocarrier system AR-NADR was generated for the treatment of DDP resistance in HCC. The core of the nanocarrier system is the metal-organic frameworks (MOF) modified with nuclear location sequence (NLS), which loading with DDP and NOR1 shRNA (R). The shell is an A54 peptide inserted into the erythrocyte membrane (AR). Our results show that AR-NADR efficiently internalized by tumor cells due to its specific binding to the A54 receptors that are abundantly expressed on the surface of HCC cells and NLS peptide-mediated nuclear entry. Additionally, DDP is more likely to be released due to the degradation of Ag-MOF in the acidic tumor microenvironment. Moreover, by acting as a vector for gene delivery, AR-NADR effectively inhibits tumor drug resistance by suppressing the expression of NOR1, which induces intracellular DDP accumulation and makes cells sensitive to DDP. Finally, the anti-HCC efficacy and mechanisms of AR-NADR were systematically elucidated by a HepG2/DDP cell model as well as a tumor model. Therefore, AR-NADR constitutes a key strategy to achieve excellent gene silencing and antitumor efficacy, which provides effective gene therapy and precise treatment strategies for cisplatin resistance in HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Biomimética , Neoplasias Hepáticas/patología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Microambiente Tumoral
3.
Vox Sang ; 116(6): 682-691, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33529377

RESUMEN

BACKGROUND AND OBJECTIVES: Thousands of healthcare workers (HCWs) have been infected with 2019 novel coronavirus pneumonia (COVID-19) during the COVID-19 pandemic. Laboratory personnel in blood transfusion departments may be infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) if laboratory biosafety protection is insufficient. Therefore, we investigated the current situation of laboratory biosafety protection in blood transfusion departments to determine how to improve the safety of laboratory processes. MATERIALS AND METHODS: An online survey was conducted in blood transfusion departments from 1st to 6th May 2020 in China. A total of 653 individuals completed the questionnaire. The questionnaire was designed with reference to COVID-19 laboratory biosafety summarized in Annex II. All responses were summarized using only descriptive statistics and expressed as frequencies and ratios [n (%)]. RESULTS: Most participants were concerned about COVID-19. Some participants had inadequate knowledge of COVID-19. Two participants stated that there were laboratory personnel infected with SARS-CoV-2 in their departments. A total of 31 (4.7%) participants did not receive any safety and security training. In terms of laboratory biosafety protection practices, the major challenges were suboptimal laboratory safety practices and insufficient laboratory conditions. CONCLUSION: The major deficiencies were insufficient security and safety training, and a lack of personal protective equipment, automatic cap removal centrifuges and biosafety cabinets. Consequently, we should enhance the security and safety training of laboratory personnel to improve their laboratory biosafety protection practices and ensure that laboratory conditions are sufficient to improve the safety of laboratory processes.


Asunto(s)
COVID-19/prevención & control , Contención de Riesgos Biológicos , Laboratorios , Pandemias , Reacción a la Transfusión/prevención & control , Adolescente , Adulto , COVID-19/epidemiología , China/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Adulto Joven
4.
J Nanobiotechnology ; 19(1): 229, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34348721

RESUMEN

BACKGROUND: Due to the intelligent survival strategy and self-preservation of methicillin-resistant Staphylococcus aureus (MRSA), many antibiotics are ineffective in treating MRSA infections. Nano-drug delivery systems have emerged as a new method to overcome this barrier. The aim of this study was to construct a novel nano-drug delivery system for the treatment of MRSA infection, and to evaluate the therapeutic effect and biotoxicity of this system. We prepared a nano silver metal-organic framework using 2-methylimidazole as ligand and silver nitrate as ion provider. Vancomycin (Vanc) was loaded with Ag-MOF, and nano-sized platelet vesicles were prepared to encapsulate Ag-MOF-Vanc, thus forming the novel platelet membrane-camouflaged nanoparticles PLT@Ag-MOF-Vanc. RESULTS: The synthesized Ag-MOF particles had uniform size and shape of radiating corona. The mean nanoparticle size and zeta potential of PLT@Ag-MOF-Vanc were 148 nm and - 25.6 mV, respectively. The encapsulation efficiency (EE) and loading efficiency (LE) of vancomycin were 81.0 and 64.7 %, respectively. PLT@Ag-MOF-Vanc was shown to be a pH-responsive nano-drug delivery system with good biocompatibility. Ag-MOF had a good inhibitory effect on the growth of three common clinical strains (Escherichia coli, Pseudomonas aeruginosa, and S. aureus). PLT@Ag-MOF-Vanc showed better antibacterial activity against common clinical strains in vitro than free vancomycin. PLT@Ag-MOF-Vanc killed MRSA through multiple approaches, including interfering with the metabolism of bacteria, catalyzing reactive oxygen species production, destroying the integrity of cell membrane, and inhibiting biofilm formation. Due to the encapsulation of the platelet membrane, PLT@Ag-MOF-Vanc can bind to the surface of the MRSA bacteria and the sites of MRSA infection. PLT@Ag-MOF-Vanc had a good anti-infective effect in mouse MRSA pneumonia model, which was significantly superior to free vancomycin, and has no obvious toxicity. CONCLUSIONS: PLT@Ag-MOF-Vanc is a novel effective targeted drug delivery system, which is expected to be used safely in anti-infective therapy of MRSA.


Asunto(s)
Portadores de Fármacos/farmacología , Estructuras Metalorgánicas/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Sistema de Administración de Fármacos con Nanopartículas/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Escherichia coli/efectos de los fármacos , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Nanopartículas , Pseudomonas aeruginosa/efectos de los fármacos , Células RAW 264.7 , Vancomicina/farmacología
5.
Endocr J ; 67(4): 397-408, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31875589

RESUMEN

It has been shown that circular RNAs, a class of non-coding RNA molecules, play an important role in the regulation of glucose and lipid homeostasis. In the present study, we sought to investigate the function of circular RNA HIPK3 (circHIPK3) in diabetes-associated metabolic disorders, including hyperglycemia and insulin resistance. Results show that oleate stimulated circHIPK3 increase, and that circHIPK3 enhanced the stimulatory effect of oleate on adipose deposition, triglyceride (TG) content, and cellular glucose content in HepG2 cells. MiR-192-5p was the potential target of circHIPK3, since circHIPK3 significantly decreased miR-192-5p mRNA level, whereas anti-circHIPK3 significantly increased miR-192-5p mRNA level. Further study shows that transcription factor forkhead box O1 (FOXO1) was a downstream regulator of miR-192-5p, since miR-192-5p significantly decreased FOXO1 expression, whereas circHIPK3 significantly increased FOXO1 expression. Notably, the inhibitory effect of miR-192-5p was significantly reversed by circHIPK3. In vivo study shows that anti-miR-192-5p significantly increased blood glucose content, which was significantly inhibited by FOXO1 shRNA. MiR-192-5p significantly decreased adipose deposition and TG content in HepG2 cells, which was significantly reversed by the co-treatment with circHIPK3. Forskolin/dexamethasone (FSK/DEX) significantly increased cellular glucose, mRNA level of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase), and this stimulatory effect of FSK/DEX was significantly inhibited by miR-192-5p. In the presence of circHIPK3, however, the inhibitory effect of miR-192-5p was totally lost. In summary, the present study demonstrated that circHIPK3 contributes to hyperglycemia and insulin resistance by sponging miR-192-5p and up-regulating FOXO1.


Asunto(s)
Proteína Forkhead Box O1/genética , Hepatocitos/metabolismo , Hiperglucemia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Circular/metabolismo , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Línea Celular , Línea Celular Tumoral , Colforsina/farmacología , Dexametasona/farmacología , Proteína Forkhead Box O1/metabolismo , Glucocorticoides/farmacología , Glucosa/metabolismo , Glucosa-6-Fosfatasa/efectos de los fármacos , Glucosa-6-Fosfatasa/genética , Células Hep G2 , Humanos , Hiperglucemia/metabolismo , Resistencia a la Insulina , Ratones , Ácido Oléico/farmacología , Fosfoenolpiruvato Carboxiquinasa (ATP)/efectos de los fármacos , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Triglicéridos/metabolismo , Regulación hacia Arriba
6.
J Insect Sci ; 20(3)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32396202

RESUMEN

A large number of ecdysteroid-regulated 16 kDa proteins (ESR16s) of insects have been isolated and annotated in GenBank; however, knowledge on insect ESR16s remain limited. In the present study, we characterized an ecdysteroid-regulated 16 kDa protein gene isolated in Chinese oak silkworm, Antheraea pernyi Guérin-Méneville ('ApESR16' in the following), an important silk-producing and edible insect. The obtained cDNA sequence of ApESR16 is 1,049 bp, harboring an open reading frame of 441 bp that encodes a polypeptide of 146 amino acids. CD-search revealed that ApESR16 contains the putative cholesterol/lipid binding sites on conserved domain Npc2_like (Niemann-Pick type C-2) belonging to the MD-2-related lipid-recognition superfamily. Sequence comparison revealed that ApESR16 exhibits 51-57% identity to ESR16s of lepidopteran insects, 36-41% identity to ESR16 or NPC2a of nonlepidopteran insects, and 28-32% identity to NPC2a of vertebrates, indicating a high sequence divergence during the evolution of animals. Phylogenetic analysis found that the used sequences were divided into two groups corresponding to vertebrates and invertebrates, and the used insect sequences were also well clustered according to their families. The A. pernyi ESR16 mRNA is expressed during all four developmental stages and in all tested tissues. Injection of 20-hydroxyecdysone (20-E) into A. pernyi diapausing pupae triggering diapause termination induced upregulation of ESR16 mRNA compared to the diapausing pupae, with the highest expression level at day 2 in the ovaries but day 12 in the fat body. Our results suggested that ApESR16 might be a diapause-related gene and plays a vital role in the pupal diapause of A. pernyi.


Asunto(s)
Ecdisteroides/metabolismo , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Mariposas Nocturnas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Masculino , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Filogenia , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Alineación de Secuencia
7.
Sensors (Basel) ; 18(10)2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262763

RESUMEN

This paper presents a linear Kalman filter for yaw estimation of land vehicles using magnetic angular rate and gravity (MARG) sensors. A gyroscope measurement update depending on the vehicle status and constraining yaw estimation is introduced. To determine the vehicle status, the correlations between outputs from different sensors are analyzed based on the vehicle kinematic model and Coriolis theorem, and a vehicle status marker is constructed. In addition, a two-step measurement update method is designed. The method treats the magnetometer measurement update separately after the other updates and eliminates its impact on attitude estimation. The performances of the proposed algorithm are tested in experiments and the results show that: the introduced measurement update is an effective supplement to the magnetometer measurement update in magnetically disturbed environments; the two-step measurement update method makes attitude estimation immune to errors induced by magnetometer measurement update, and the proposed algorithm provides more reliable yaw estimation for land vehicles than the conventional algorithm.

9.
Sensors (Basel) ; 15(5): 11222-38, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25985165

RESUMEN

We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

10.
BMC Bioinformatics ; 15 Suppl 13: S5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25434877

RESUMEN

BACKGROUND: The excessive production of lactic acid by L. bulgaricus during yogurt storage is a phenomenon we are always tried to prevent. The methods used in industry either control the post-acidification inefficiently or kill the probiotics in yogurt. Genetic methods of changing the activity of one enzyme related to lactic acid metabolism make the bacteria short of energy to growth, although they are efficient ways in controlling lactic acid production. RESULTS: A model of pH-induced promoter regulation on the production of lactic acid by L. bulgaricus was built. The modelled lactic acid metabolism without pH-induced promoter regulation fitted well with wild type L. bulgaricus (R2LAC = 0.943, R2LA = 0.942). Both the local sensitivity analysis and Sobol sensitivity analysis indicated parameters Tmax, GR, KLR, S, V0, V1 and dLR were sensitive. In order to guide the future biology experiments, three adjustable parameters, KLR, V0 and V1, were chosen for further simulations. V0 had little effect on lactic acid production if the pH-induced promoter could be well induced when pH decreased to its threshold. KLR and V1 both exhibited great influence on the producing of lactic acid. CONCLUSIONS: The proposed method of introducing a pH-induced promoter to regulate a repressor gene could restrain the synthesis of lactic acid if an appropriate strength of promoter and/or an appropriate strength of ribosome binding sequence (RBS) in lacR gene has been designed.


Asunto(s)
Algoritmos , Regulación de la Expresión Génica , Operón Lac/genética , Ácido Láctico/metabolismo , Lactobacillus/genética , Lactobacillus/metabolismo , Proteínas de Transporte de Membrana/genética , Células Cultivadas , Concentración de Iones de Hidrógeno , Lactobacillus/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Sensibilidad y Especificidad , Transcripción Genética
11.
Int J Biol Macromol ; 254(Pt 1): 127505, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37863136

RESUMEN

Calosoma maximoviczi, a predatory pest beetle, poses a significant threat to wild silk farm production due to its predation on wild silkworms. Given the coexistence of this species with beneficial silkworms in the farm orchards, chemical pesticides are not an ideal solution for controlling its population. In this study, we employed a comprehensive multi-target RNA interference (RNAi) approach to disrupt the olfactory perception of C. maximoviczi through independently silencing 16 odorant receptors (ORs) in the respective genders. Specifically, gene-specific siRNAs were designed to target a panel of ORs, allowing us to investigate the specific interactions between odorant receptors and ligands within this species. Our investigation led to identifying four candidate siOR groups that effectively disrupted the beetle's olfactory tracking of various odorant ligands associated with different trophic levels. Furthermore, we observed sex-specific differences in innate RNAi responses reflected by subsequent gene expression, physiological and behavioral consequences, underscoring the complexity of olfactory signaling and emphasizing the significance of considering species/sex-specific traits when implementing pest control measures. These findings advance our understanding of olfactory coding patterns in C. maximoviczi beetles and establish a foundation for future research in the field of pest management strategies.


Asunto(s)
Escarabajos , Receptores Odorantes , Animales , Femenino , Masculino , Escarabajos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Conducta Predatoria , Olfato/genética , Ligandos
12.
Front Bioeng Biotechnol ; 12: 1352023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766649

RESUMEN

Osteochondral defect (OCD) is a common but challenging condition in orthopaedics that imposes huge socioeconomic burdens in our aging society. It is imperative to accelerate the R&D of regenerative scaffolds using osteochondral tissue engineering concepts. Yet, all innovative implant-based treatments require animal testing models to verify their feasibility, biosafety, and efficacy before proceeding to human trials. Rabbit models offer a more clinically relevant platform for studying OCD repair than smaller rodents, while being more cost-effective than large animal models. The core-decompression drilling technique to produce full-thickness distal medial femoral condyle defects in rabbits can mimic one of the trauma-relevant OCD models. This model is commonly used to evaluate the implant's biosafety and efficacy of osteochondral dual-lineage regeneration. In this article, we initially indicate the methodology and describe a minimally-invasive surgical protocol in a step-wise manner to generate a standard and reproducible rabbit OCD for scaffold implantation. Besides, we provide a detailed procedure for sample collection, processing, and evaluation by a series of subsequent standardized biochemical, radiological, biomechanical, and histological assessments. In conclusion, the well-established, easy-handling, reproducible, and reliable rabbit OCD model will play a pivotal role in translational research of osteochondral tissue engineering.

13.
STAR Protoc ; 4(3): 102407, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392391

RESUMEN

By virtue of their capability to replicate and regenerate, human stem-cell-derived beta-like cells could be a valuable resource for cellular therapy targeting insulin-dependent diabetes. Here, we present a protocol to generate beta-like cells from human embryonic stem cells (hESCs). We first describe steps for differentiation of beta-like cells from hESCs and CD9-negative beta-like cell enrichment through fluorescence-activated cell sorting. We then detail immunofluorescence, flow cytometry, and glucose-stimulated insulin secretion assay for characterization of human beta-like cells. For complete details on the use and execution of this protocol, please refer to Li et al. (2020).1.


Asunto(s)
Células Madre Embrionarias Humanas , Células Secretoras de Insulina , Humanos , Células Madre Embrionarias , Diferenciación Celular , Páncreas , Hormonas Pancreáticas
14.
Open Life Sci ; 18(1): 20220624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426618

RESUMEN

In this study, magnetic resonance imaging (MRI) based on a deep learning algorithm was used to evaluate the clinical effect of the small-incision approach in treating proximal tibial fractures. Super-resolution reconstruction (SRR) algorithm was used to reconstruct MRI images for analysis and comparison. The research objects were 40 patients with proximal tibial fractures. According to the random number method, patients were divided into a small-incision approach group (22 cases) and an ordinary approach group (18 cases). The peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) of the MRI images before and after the reconstruction of the two groups were analyzed. The operative time, intraoperative blood loss, complete weight-bearing time, complete healing time, knee range of motion, and knee function of the two treatments were compared. The results showed that after SRR, the PSNR and SSIM of MRI images were 35.28 and 0.826 dB, respectively, so the MRI image display effect was better. The operation time in the small-incision approach group was 84.93 min, which was significantly shorter than that in the common approach group, and the intraoperative blood loss was 219.95 mL, which was significantly shorter than that in the common approach group (P < 0.05). The complete weight-bearing time and complete healing time in the small-incision approach group were 14.75 and 16.79 weeks, respectively, which were significantly shorter than those in the ordinary approach group (P < 0.05). The half-year knee range of motion and 1-year knee range of motion in the small-incision approach group were 118.27° and 128.72°, respectively, which were significantly higher than those in the conventional approach group (P < 0.05). After 6 months of treatment, the rate of good treatment was 86.36% in the small-incision approach group and 77.78% in the ordinary approach group. After 1 year of treatment, the rate of excellent and good treatment was 90.91% in the small-incision approach group and 83.33% in the ordinary approach group. The rate of good treatment for half a year and 1 year in the small incision group was significantly higher than that in the common approach group (P < 0.05). In conclusion, MRI image based on deep learning algorithm has a high resolution, good display effect, and high application value. The small-incision approach can be applied to the treatment of proximal tibial fractures, which showed good therapeutic effects and a high positive clinical application value.

15.
Biosensors (Basel) ; 13(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37504091

RESUMEN

Gesture recognition has been playing an increasingly important role in the field of intelligent control and human-computer interaction. Gesture recognition technology based on electromyography (EMG) with high accuracy has been widely applied. However, conventional rigid EMG electrodes do not fit the mechanical properties of human skin. Therefore, rigid EMG electrodes are easily influenced by body movements, and uncomfortable to wear and use for a long time. To solve these problems, a stretchable EMG electrode based on liquid metal nanoparticles was developed in this research. It is conformal with human skin because of its similar mechanical properties to skin. Liquid metal nanoparticles mixed in polymer can be connected to each other to form conductive circuits when pressed by mechanical force. Therefore, this preparation method of liquid metal flexible gel electrodes is low-cost and can be fabricated largely. Moreover, the liquid metal flexible gel electrodes have great stretch ability. Their resistance increases slightly at maximum strain state. Based on these advantages, the flexible gel electrodes are applied to arm to collect EMG signals generated by human hand movements. In addition, the signals are analyzed by artificial intelligence algorithm to realize accurate gesture recognition.


Asunto(s)
Inteligencia Artificial , Gestos , Humanos , Electromiografía/métodos , Algoritmos , Electrodos , Metales
16.
Front Bioeng Biotechnol ; 11: 1166790, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113664

RESUMEN

In recent years, the treatment of Acinetobacter baumannii infections has become a pressing clinical challenge due to its increasing incidence and its serious pathogenic risk. The research and development of new antibacterial agents for A. baumannii have attracted the attention of the scientific community. Therefore, we have constructed a new pH-responsive antibacterial nano-delivery system (Imi@ZIF-8) for the antibacterial treatment of A. baumannii. Due to its pH-sensitive characteristics, the nano-delivery system offers an improved release of the loaded imipenem antibiotic at the acidic infection site. Based on the high loading capacity and positive charge of the modified ZIF-8 nanoparticles, they are excellent carriers and are suitable for imipenem loading. The Imi@ZIF-8 nanosystem features synergistic antibacterial effects, combining ZIF-8 and imipenem to eliminate A. baumannii through different antibacterial mechanisms. When the loaded imipenem concentration reaches 20 µg/mL, Imi@ZIF-8 is highly effective against A. baumannii in vitro. Imi@ZIF-8 not only inhibits the biofilm formation of A. baumannii but also has a potent killing effect. Furthermore, in mice with celiac disease, the Imi@ZIF-8 nanosystem demonstrates excellent therapeutic efficacy against A. baumannii at imipenem concentrations of 10 mg/kg, and it can inhibit inflammatory reaction and local leukocyte infiltration. Due to its biocompatibility and biosafety, this nano-delivery system is a promising therapeutic strategy in the clinical treatment of A. baumannii infections, providing a new direction for the treatment of antibacterial infections.

17.
Ageing Res Rev ; 87: 101931, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37031723

RESUMEN

Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/uso terapéutico , Homeostasis
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121939, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36219964

RESUMEN

As a representative biochemical indicator, alkaline phosphatase (ALP) is of great importance in indicating and diagnosing clinical diseases. Herein, we developed a signal-on fluorescence sensing method for sensitive ALP activity detection based on the enzyme-assisted target recycling (EATR) technique. In this method, a two-step signal amplification process is designed. In the presence of ALP, the 3' phosphate group of an ss-DNA is removed explicitly by ALP, thus releasing free 3'-OH. Terminal deoxynucleotidyl transferase (TdT) can subsequently extend this substrate to generate poly(A) tails, converting the trace-level ALP information into multiple sequences and achieving the first-time amplification. A poly(T) Taqman probe labeled with FAM and BHQ1 provides the second one under the assistance of T7 exonuclease (T7 Exo) through alternate hybridization and degradation of ds-DNA regions. The previously quenched fluorescence is recovered due to the departure of FAM/BHQ1 during the cleavage of T7 Exo. Thus, taking advantage of template-free TdT-mediated polymerization and T7 Exo-based EATR, this strategy shows a sensitive LOD at 0.0074 U/L (S/N = 3) and a linear range of 0.01-8 U/L between ALP concentration and fluorescence intensity. To further verify the specificity and accuracy in practical application, we challenged it in a set of co-existing interference and biological environments and have gained satisfying results. The proposed method successfully quantified the ALP levels in clinical human serum samples, suggesting its applicability in practical application. Moreover, we have used this method to investigate the inhibition effects of Na3VO4. Above all, the proposed assay is sensitive, facile, and cost-effective for ALP determining, holding a promising perspective and excellent potential in clinical diagnosis and drug screening.


Asunto(s)
Fosfatasa Alcalina , Técnicas Biosensibles , Humanos , Fosfatasa Alcalina/metabolismo , Hibridación de Ácido Nucleico , Espectrometría de Fluorescencia , ADN , Límite de Detección , Técnicas Biosensibles/métodos
19.
Nanoscale ; 15(21): 9457-9476, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37161583

RESUMEN

A synergistic combination of treatment with immunogenic cell death (ICD) inducers and immunoadjuvants may be a practical way to boost the anticancer response and successfully induce an immune response. The use of HR@UCNPs/CpG-Apt/DOX, new biomimetic drug delivery nanoparticles generated to combat breast cancer, is reported here as a unique strategy to produce immunogenicity and boost cancer immunotherapy. HR@UCNPs/CpG-Apt/DOX (HR-UCAD) consists of two parts. The core is composed of an immunoadjuvant CpG (a toll-like receptor 9 agonist) fused with a dendritic cell-specific aptamer sequence (CpG-Apt) to decorate upconversion nanoparticles (UCNPs) with the successful intercalation of doxorubicin (DOX) into the consecutive base pairs of Apt-CpG to construct an immune nanodrug UCNPs@CpG-Apt/DOX. The targeting molecule hyaluronic acid (HA) was inserted into a red blood cell membrane (RBCm) to form the shell (HR). HR-UCAD possessed a strong capacity to specifically induce ICD. Following DOX-induced ICD of cancer cells, sufficient exposure to tumor antigens and UCNPs@CpG-Apt (UCA) activated the tumor-specific immune response and reversed the immunosuppressive tumor microenvironment. In addition, HR-UCAD has good biocompatibility and increases the active tumor-targeting effect. Furthermore, HR-UCAD exhibits excellent near-infrared upconversion luminescence emission at 804 nm under irradiation with a 980 nm laser, which has great potential in biomedical imaging. Thus, the RBCm-camouflaged drug delivery system is a promising targeted chemotherapy and immunotherapy nanocomplex that could be used for effective targeted breast cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Membrana Eritrocítica , Antineoplásicos/farmacología , Doxorrubicina , Neoplasias de la Mama/tratamiento farmacológico , Inmunoterapia , Adyuvantes Inmunológicos , ADN , Línea Celular Tumoral , Microambiente Tumoral
20.
Adv Sci (Weinh) ; 10(18): e2301361, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075744

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the elderly population. Despite significant advances in studies of the pathobiology on AD, there is still no effective treatment. Here, an erythrocyte membrane-camouflaged nanodrug delivery system (TR-ZRA) modified with transferrin receptor aptamers that can be targeted across the blood-brain barrier to ameliorate AD immune environment is established. Based on metal-organic framework (Zn-CA), TR-ZRA is loaded with CD22shRNA plasmid to silence the abnormally high expression molecule CD22 in aging microglia. Most importantly, TR-ZRA can enhance the ability of microglia to phagocytose Aß and alleviate complement activation, which can promote neuronal activity and decrease inflammation level in the AD brain. Moreover, TR-ZRA is also loaded with Aß aptamers, which allow rapid and low-cost monitoring of Aß plaques in vitro. After treatment with TR-ZRA, learning, and memory abilities are enhanced in AD mice. In conclusion, the biomimetic delivery nanosystem TR-ZRA in this study provides a promising strategy and novel immune targets for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Péptidos beta-Amiloides/uso terapéutico , Membrana Eritrocítica/metabolismo , Nanomedicina Teranóstica , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA