Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 710: 149863, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38579535

RESUMEN

Vascular calcification is an important factor in the high morbidity and mortality of Cardiovascular and cerebrovascular diseases. Vascular damage caused by calcification of the intima or media impairs the physiological function of the vascular wall. Inflammation is a central factor in the development of vascular calcification. Macrophages are the main inflammatory cells. Dynamic changes of macrophages with different phenotypes play an important role in the occurrence, progression and stability of calcification. This review focuses on macrophage polarization and the relationship between macrophages of different phenotypes and calcification environment, as well as the mechanism of interaction, it is considered that macrophages can promote vascular calcification by releasing inflammatory mediators and promoting the osteogenic transdifferentiation of smooth muscle cells and so on. In addition, several therapeutic strategies aimed at macrophage polarization for vascular calcification are described, which are of great significance for targeted treatment of vascular calcification.


Asunto(s)
Músculo Liso Vascular , Calcificación Vascular , Humanos , Calcificación Vascular/genética , Macrófagos , Osteogénesis , Fenotipo , Miocitos del Músculo Liso
2.
Plant Biotechnol J ; 22(7): 1989-2006, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38412139

RESUMEN

Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.


Asunto(s)
Brasinoesteroides , Grano Comestible , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Azúcares/metabolismo , Transducción de Señal/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Estudio de Asociación del Genoma Completo
3.
Rev Cardiovasc Med ; 25(6): 227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39076332

RESUMEN

Background: Tai Chi is an increasingly utilized aerobic rehabilitation exercise in the field of cardiovascular disease (CVD). However, there remains debate regarding its effects on physiological function and mental health in patients with coronary heart disease (CHD). This study aims to investigate the impact of Tai Chi-based rehabilitation exercises on physical and psychological health outcomes for CHD patients. Methods: By collecting data from 12 databases up to December 2022, we conducted a meta-analysis of randomized controlled trials (RCTs) to evaluate the effects of Tai Chi on the physical function and psychological health among CHD patients. Results: We analyzed twenty qualified studies involving 2095 patients. Meta-analyses revealed that compared with conventional therapy groups, those who participated in Tai Chi-based interventions demonstrated significant improvements in physical function as measured by six-minute walk test (6MWT) [mean difference (MD) = 56.40, 95% confidence interval (CI) (38.50, 74.29), p < 0.01], maximal oxygen consumption ( VO 2 max) [standardized mean difference (SMD) = 0. 57, 95% CI (0.12, 1.03), p = 0.01], New York Heart Association (NYHA) class [relative risk (RR) = 1.34, 95% CI (1.18, 1.53), p < 0.01] and physical health components (PHC) [SMD = 1.23, 95% CI (0.76, 1.69), p < 0.01]. Additionally, Tai Chi participants showed greater improvement than control groups across various psychological parameters including anxiety scales [SMD = -0.80, 95% CI (-1.33, -0.28), p = 0.003], depression scales [SMD = -0.77, 95% CI (-1.32, -0.23), p = 0.005] and mental health components (MHC) [SMD = 1.27, 95% CI (0.76, -1.78), p < 0.01]. The GRADEpro (Grade Guideline Development Tool) indicated evidence levels ranging from very low to moderate. Conclusions: The present meta-analysis demonstrates that mind-body rehabilitation exercises based on Tai Chi can improve both physical and psychological health outcomes for CHD patients. These findings suggest that this exercise pattern may be a potential option for cardiovascular rehabilitation. PROSPERO Registration: The protocol for this systematic review and meta-analysis has been registered with PROSPERO International Prospective Systematic Reviews (No: CRD42022370021, http://www.crd.york.ac.uk/PROSPERO).

4.
Fish Shellfish Immunol ; 146: 109412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296007

RESUMEN

Cluster of differentiation 53 (CD53) also known as OX44 or tetraspanin 25 (TSPAN25) is a glycoprotein belonging to the tetraspanin family. Members of the tetraspanin family are characterized by four transmembrane domains, including intracellular N- and C-termini, and small and large extracellular domains. Currently, the function of CD53 in teleost is not well understood. In this study, we identified a CD53 (named SmCD53) from turbot (Scophthalmus maximus) and examined its expression and biological activity. SmCD53 contained 231 amino acid residues and was predicted to be a tetraspanin with small and large extracellular domains. SmCD53 expression was observed in different tissues, particularly in immune-related organs. Experimental infection with bacterial or viral pathogen significantly up-regulated SmCD53 expression in a time-dependent manner. Immunofluorescence microscopy analysis showed that SmCD53 was localized on the surface of PBL and was recognized by antibody against its large extracellular domain. Ligation of SmCD53 onto PBLs with antibodies suppressed the respiratory burst activity, inflammatory reaction, and enhanced cell viability. SmCD53 knockdown significantly enhanced bacterial dissemination and proliferation in turbot. Overall, these results underscore the importance of CD53 in the maintenance of the function and homeostasis of the immune system.


Asunto(s)
Peces Planos , Animales , Tetraspaninas/genética , Leucocitos , Tetraspanina 25 , Anticuerpos
5.
Fish Shellfish Immunol ; 145: 109325, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154762

RESUMEN

Interleukin-20 (IL-20), as an essential member of IL-10 family, plays vital roles in mammalian immunological response such as antimicrobial, inflammation, hematopoiesis, and immune diseases. In teleost, the study about immune antimicrobial function of IL-20 is largely scarce. In this article, we revealed the expression profiles and the immunological functions of the IL-20 (CsIL-20) in tongue sole Cynoglossus semilaevis. CsIL-20 is composed of 183 amino acid residues, with seven cysteine residues and a typical IL-10 domain which comprises six α-helices and two ß-sheets, and shares 34.4-71.2 % identities with other teleost IL-20. CsIL-20 was constitutively expressed in a variety of tissues and regulated by bacterial invasion, and the recombinant CsIL-20 (rCsIL-20) could bind to different bacteria. In vitro rCsIL-20 could interact with the membrane of peripheral blood leukocytes (PBLs), leading to the attenuation of reactive oxygen species (ROS) production and acid phosphatase activity in PBLs. In line with In vitro results, In vivo rCsIL-20 could obviously suppressed the host immune against bacterial infection. Furthermore, knockdown of CsIL-20 in vivo could markedly enhance the host antibacterial immunity. Collectively, these observations offer new insights into the negative effect of CsIL-20 on antibacterial immunity.


Asunto(s)
Antiinfecciosos , Enfermedades de los Peces , Peces Planos , Interleucinas , Animales , Interleucina-10 , Secuencia de Aminoácidos , Proteínas de Peces , Leucocitos/metabolismo , Bacterias/metabolismo , Antibacterianos , Peces/metabolismo , Mamíferos/metabolismo
6.
Fish Shellfish Immunol ; 151: 109724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942251

RESUMEN

Takifugu rubripes is a highly valued cultured fish in Asia, while pathogen infections can result in severe diseases and lead to substantial economic losses. Toll-like receptors (TLRs), as pattern recognition receptors, play a crucial role on recognition pathogens and initiation innate immune response. However, the immunological properties of teleost-specific TLR23 remain largely unknown. In this study, we investigated the biological functions of TLR23 (TrTLR23) from T. rubripes, found that TrTLR23 existed in various organs. Following bacterial pathogen challenge, the expression levels of TrTLR23 were significantly increased in immune related organs. TrTLR23 located on the cellular membrane and specifically recognized pathogenic microorganism. Co-immunoprecipitation and antibody blocking analysis revealed that TrTLR23 recruited myeloid differentiation primary response protein (MyD88), thereby mediating the activation of the ERK signaling pathway. Furthermore, in vivo showed that, when TrTLR23 is overexpressed in T. rubripes, bacterial replication in fish tissues is significantly inhibited. Consistently, when TrTLR23 expression in T. rubripes is knocked down, bacterial replication is significantly enhanced. In conclusion, these findings suggested that TrTLR23 played a critical role on mediation TLR23-MyD88-ERK axis against bacterial infection. This study revealed that TLR23 involved in the innate immune mechanism, and provided the foundation for development disease control strategies in teleost.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Factor 88 de Diferenciación Mieloide , Takifugu , Receptores Toll-Like , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Takifugu/inmunología , Takifugu/genética , Enfermedades de los Peces/inmunología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/inmunología , Inmunidad Innata/genética , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Regulación de la Expresión Génica/inmunología , Edwardsiella/fisiología , Edwardsiella/inmunología , Vibrio/fisiología
7.
Antonie Van Leeuwenhoek ; 117(1): 52, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478113

RESUMEN

In this study, we reported a Gram-stain-negative, ovoid to rod-shaped, atrichous, and facultative anaerobe bacteria strain named YMD61T, which was isolated from the intertidal sediment of Yangma island, China. Growth of strain YMD61T occurred at 10.0-45.0 °C (optimum, 30.0 °C), pH 7.0-10.0 (optimum, 8.0) and with 0-3.0% (w/v) NaCl (optimum, 2.0%). Phylogenetic tree analysis based on 16 S rRNA gene or genomic sequence indicated that strain YMD61T belonged to the genus Fuscovulum and was closely related to Fuscovulum blasticum ATCC 33,485T (96.6% sequence similarity). Genomic analysis indicated that strain YMD61T contains a circular chromosome of 3,895,730 bp with DNA G + C content of 63.3%. The genomic functional analysis indicated that strain YMD61T is a novel sulfur-metabolizing bacteria, which is capable of fixing carbon through an autotrophic pathway by integrating the processes of photosynthesis and sulfur oxidation. The predominant respiratory quinone of YMD61T was ubiquinone-10 (Q-10). The polar lipids of YMD61T contained phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, five unidentified lipids, unidentified aminolipid and unidentified aminophospholipid. The major fatty acids of strain YMD61T contained C18:1ω7c 11-methyl and summed feature 8 (C18:1 ω 7c or/and C18:1 ω 6c). Phylogenetic, physiological, biochemical and morphological analyses suggested that strain YMD61T represents a novel species of the genus Fuscovulum, and the name Fuscovulum ytuae sp. nov. is proposed. The type strain is YMD61T (= MCCC 1K08483T = KCTC 43,537T).


Asunto(s)
Sedimentos Geológicos , Rhodobacteraceae , Sedimentos Geológicos/microbiología , Fosfolípidos/química , Filogenia , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Ácidos Grasos/química , Rhodobacteraceae/genética , China , Azufre , ARN Ribosómico 16S/genética
8.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886121

RESUMEN

Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 µg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 µg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 µg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.


Asunto(s)
Antibacterianos , Biopelículas , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Hojas de la Planta , Prunus persica , Percepción de Quorum , Plata , Percepción de Quorum/efectos de los fármacos , Plata/farmacología , Plata/química , Plata/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/microbiología , Hojas de la Planta/química , Nanopartículas del Metal/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antibacterianos/farmacología , Prunus persica/microbiología , Aizoaceae/química , Factores de Virulencia/metabolismo
9.
Mikrochim Acta ; 191(5): 284, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652331

RESUMEN

A dual-mode (colorimetric/fluorescence) nanoenzyme-linked immunosorbent assay (NLISA) was developed based on Au-Cu nanocubes generating Prussian blue nanoparticles (PBNPs). It is expected that this method can be used to detect the residues of sulfonamides in the field, and solve the problem of long analysis time and high cost of the traditional method. Sulfadimethoxine (SDM) was selected as the proof-of-concept target analyte. The Au-Cu nanocubes were linked to the aptamer by amide interaction, and the Au-Cu nanocubes, SDM and antibody were immobilized on a 96-well plate using the sandwich method. The assay generates PBNPs by oxidising the Cu shells on the Au-Cu nanocubes in the presence of hydrochloric acid, Fe3+ and K3[Fe (CN)6]. In this process, the copper shell undergoes oxidation to Cu2+ and subsequently Cu2 + further quenches the fluorescence of the carbon point. PBNPs exhibit peroxidase-like activity, oxidising 3,3',5,5'-tetramethylbenzidine (TMB) to OX-TMB in the presence of H2O2, which alters the colorimetric signal. The dual-mode signals are directly proportional to the sulfadimethoxine concentration within the range 10- 3~10- 7 mg/mL. The limit of detection (LOD) of the assay is 0.023 ng/mL and 0.071 ng/mL for the fluorescent signal and the colorimetric signal, respectively. Moreover, the assay was successfully applied to determine sulfadimethoxine in silver carp, shrimp, and lamb samples with satisfactory results.


Asunto(s)
Carbono , Colorimetría , Cobre , Ferrocianuros , Sulfadimetoxina , Ferrocianuros/química , Sulfadimetoxina/análisis , Sulfadimetoxina/química , Cobre/química , Colorimetría/métodos , Carbono/química , Límite de Detección , Oro/química , Puntos Cuánticos/química , Fluorometría/métodos , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Nanopartículas/química , Animales , Ensayo de Inmunoadsorción Enzimática/métodos
10.
Molecules ; 29(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276578

RESUMEN

Soluble dietary fiber (SDF) benefits human health, and different extraction methods might modify the structure and functions of the SDFs. Radish is rich in dietary fiber. To assess the impact of various extraction techniques on the properties and functions of radish SDF, the SDFs were obtained from white radish pomace using alkaline, ultrasonic-assisted, and fermentation-assisted extraction methods. Analysis was conducted on the structure, physicochemical characteristics, thermal properties, and functional attributes of the SDFs. The study revealed that various extraction techniques can impact the monosaccharides composition and functionality of the SDFs. Compared with the other two extraction methods, the surface structures of SDFs obtained by fermentation-assisted extraction were looser and more porous, and the SDF had better water solubility and water/oil holding capacity. The adsorption capacities of glucose and cholesterol of the SDFs obtained from fermentation-assisted extraction were also improved. Wickerhamomyces anomalus YFJ252 seems the most appropriate strain to ferment white radish pomace to acquire SDF; the water holding, oil holding, glucose absorption capacity, and cholesterol absorption capacity at pH 2 and pH 7 have a 3.06, 1.65, 3.19, 1.27, and 1.83 fold increase than the SDF extracted through alkaline extraction method.


Asunto(s)
Raphanus , Humanos , Agua , Glucosa , Colesterol/química , Fibras de la Dieta/análisis
11.
J Sci Food Agric ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872574

RESUMEN

BACKGROUND: The effect of oleogels prepared with peanut oil and different concentrations of γ-oryzanol and ß-sitosterol mixture (γ/ß; 20, 40, 60, 80 and 100 g kg-1) on the physicochemical and gel properties of myofibrillar protein (MP) was investigated. RESULTS: The solubility and average particle size of MP first decreased and then increased with increasing γ/ß concentration. Peanut oil or oleogels could induce the exposure of hydrophobic amino acids and the unfolding of MP, thus significantly increasing the surface hydrophobicity, sulfhydryl content and absolute value of zeta potential, which reached maximum values when the γ/ß concentration was 60 g kg-1 (P < 0.05). The addition of peanut oil decreased the gel strength and water holding capacity of MP gel. However, oleogels prepared with 60 g kg-1 γ/ß could significantly increase the hydrophobic interactions and disulfide bond content of MP gel (P < 0.05), which promoted the crosslinking and aggregation of MP, enhancing the gel properties. Peanut oil had no significant influence on the secondary structure of MP, while oleogels promoted the transition of MP conformation from α-helix to ß-sheet structure. The results of light microscopy and confocal laser scanning microscopy indicated that oleogels prepared with 60 g kg-1 γ/ß filled in the pores of MP gel network to form denser and more uniform structure. CONCLUSION: Oleogels prepared with 60 g kg-1 γ/ß could effectively improve the quality of MP gel and have promising application prospects in surimi products. © 2024 Society of Chemical Industry.

12.
Fish Physiol Biochem ; 50(3): 927-939, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38305929

RESUMEN

Temperature fluctuations are inevitable and have an important impact on the survival of fish during transportation. Therefore, the effect of temperature fluctuation (15 ± 1 °C, 15 ± 2 °C, 15 ± 3 °C) on the muscle quality, physiological, and immune function of hybrid pearl gentian grouper before waterless keeping alive, during keeping alive (0 h, 3 h, 6 h, 9 h, 12 h), and after revival for 12 h was investigated. The plasma glucose concentration of grouper gradually decreased to 0.645 ± 0.007 mg/mL, 0.657 ± 0.006 mg/mL, and 0.677 ± 0.004 mg/mL after keeping alive for 12 h under different temperature fluctuations of 15 ± 1 °C, 15 ± 2 °C, and 15 ± 3 °C, respectively. The cortisol concentration and lysozyme activity of pearl gentian grouper significantly increased (P < 0.05) during the keeping alive period. The results suggested that fish bodies would produce acute stress response, strengthen immune defense ability, and quickly consume a lot of energy to adapt to the low-temperature anhydrous environment. In all treatment groups, the activities of plasma alanine transaminase (ALT) and aspartate aminotransferase (AST) and the content of creatinine gradually increased with the prolongation of the survival time. The hardness and springiness of muscle decreased from 5965.99 ± 20.15 and 0.90 ± 0.00 to 3490.69 ± 27.59 and 0.42 ± 0.01, respectively. In the meanwhile, the change of glycogen and lactic acid content was opposite, indicating that temperature fluctuation harmed the liver, kidney function, and muscle quality. In the later stage of keeping alive, the superoxide dismutase (SOD) and catalase (CAT) activities decreased, especially in the temperature fluctuation group of ±3 °C (125.99 ± 5.48 U/mgprot, 44.21 ± 0.63 U/mgprot), leading to an imbalance of fish immunity. In summary, higher temperature fluctuation would influence the physiological function and immune defense ability and decrease the quality of pearl gentian grouper.


Asunto(s)
Estrés Fisiológico , Temperatura , Animales , Hidrocortisona/sangre , Glucemia , Lubina/fisiología , Muramidasa/sangre , Muramidasa/metabolismo , Aspartato Aminotransferasas/sangre , Alanina Transaminasa/sangre , Músculos/metabolismo , Creatinina/sangre
13.
Fish Shellfish Immunol ; 139: 108918, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37364660

RESUMEN

Interleukin 8 (IL8) is a CXC chemokine that plays a crucial role on promoting inflammatory response and immune regulation. In teleost, IL8 can induce the migration and activation of immune cells. However, the biological functions of IL8 are still unknown in Takifugu rubripes. In this study, we examined the biological characteristics of TrIL8 in T. rubripes. TrIL8 is composed of 98 residues and contained a chemokine CXC domain. We found that the TrIL8 expression was detected in diverse organs and significantly increased by Vibrio harveyi or Edwardsiella tarda challenge. The recombinant TrIL8 (rTrIL8) exhibited significantly the binding capacities to 8 tested bacteria. In addition, rTrIL8 could bind to peripheral blood leukocytes (PBL), and increased the expression of immune gene, resistance to bacterial infection, respiratory burst, acid phosphatase activity, chemotactic activity, and phagocytic activity of PBL. In the presence of rTrIL8, T. rubripes was enhanced the resistance to V. harveyi infection. These results indicated that TrIL8 is a chemokine and involved in the activation of immune cells against bacterial infection in teleost.


Asunto(s)
Infecciones Bacterianas , Takifugu , Animales , Interleucina-8 , Secuencia de Aminoácidos , Proteínas de Peces/química , Leucocitos , Factores Inmunológicos/metabolismo , Quimiocinas/metabolismo , Antibacterianos/metabolismo
14.
Fish Shellfish Immunol ; 143: 109203, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37940083

RESUMEN

Calreticulin (Crt), a conserved lectin-like pleiotropic protein, plays crucial roles in mammalian immune response. In fish, the immunological function of Crt is limited investigated. Herein, we studied the antibacterial immunity of two type of Crt homologues (i.e. PoCrt-1 and PoCrt-2) in Japanese flounder (Paralichthys olivaceus). PoCrt-1 and PoCrt-2 are composed of 419 and 427 amino acid residues respectively, with 69.09% overall sequence identities with each other. Both PoCrt-1 and PoCrt-2 contain a signal peptide and three functional domains i.e. N-, P- and C-domains. Both PoCrt-1 and PoCrt-2 were constitutively expressed at various tissues with highest expression level in liver, and obviously regulated by Edwardsiella tarda and Vibrio harveyi. Furthermore, recombinant PoCrt-1 and PoCrt-2 (rPoCrt-1 and rPoCrt-2) could bind to different Gram-negative bacteria with highest binding index with E. tarda. At same time, in vitro rPoCrt-1 and rPoCrt-2 could agglutinate E. tarda, V. harveyi, and Vibrio anguillarum, and inhibit the bacterial growth. Similarly, in vivo rPoCrt-1 and rPoCrt-2 could significantly suppress the dissemination of E. tarda. Overall, these observations add new insights into the antibacterial immunity of Crt in P. olivaceus.


Asunto(s)
Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Lenguado , Vibriosis , Animales , Calreticulina , Vibriosis/veterinaria , Peces/metabolismo , Antibacterianos , Edwardsiella tarda/fisiología , Infecciones por Enterobacteriaceae/veterinaria , Proteínas de Peces , Mamíferos/metabolismo
15.
J Sci Food Agric ; 103(9): 4458-4469, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36823492

RESUMEN

BACKGROUND: The rinsing process in the production of surimi can cause the loss of some important nutrients. To investigate the differences in nutritional properties between rinsed surimi (RS) and unrinsed surimi (US), this study compared the elemental composition, amino acid composition, fatty acid composition, proteomics, and an immunosuppression mouse model of surimi before and after rinsing, and analyzed the nutritional and immunological properties of RS and US. RESULTS: The results showed that the protein, fat, and ash contents of RS were decreased compared with those of US; specifically, the contents of essential amino acids, semi-essential amino acids, non-essential amino acids, saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids were decreased. In the non-labeled quantitative proteomics analysis, three high-abundance quantifiable protein contents and 68 low-abundance quantifiable protein contents were found in RS (P-values < 0.05, ratio > 2). Immune function experiments in mice revealed that both RS and US contributed to the recovery of immunity in immunocompromised mice. The effect of US was better than that of RS. CONCLUSION: The rinsing process in surimi processing leads to the loss of nutrients in surimi. US promotes the recovery of immunity in immunocompromised mice more effectively than RS. © 2023 Society of Chemical Industry.


Asunto(s)
Ácidos Grasos Insaturados , Peces , Animales , Ratones , Ácidos Grasos/análisis , Proteínas , Aminoácidos , Nutrientes/análisis , Ciclofosfamida , Geles/química
16.
J Sci Food Agric ; 103(7): 3367-3375, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840432

RESUMEN

BACKGROUND: Polysaccharides are the most widely used additives to enhance the quality of surimi gels. Oat ß-glucan (OG), a functional polysaccharide, is known to affect the gelation characteristics of surimi. However, it has been rarely reported. Therefore, the effect of OG at different levels on gelling properties, protein conformation, and microstructures of silver carp surimi gels were investigated. RESULTS: An increase in the OG content from 0 to 1.0% significantly improved the hardness, springiness, chewiness, puncture properties, storage modulus, and loss modulus of surimi gels. Moreover, the incorporation of OG (0-1.0%) facilitated the unfolding of proteins, resulting in the conformational transformation from α-helix to ß-sheet and ß-turn. Consequently, surimi-OG gels displayed a denser network structure with smaller and more uniform voids. Furthermore, partial free water in the gel network was converted into immobile water, increasing the water-holding capacity. However, a further increase in the OG concentration (1.0-2.0%) resulted in a looser and more uneven network structure with large and numerous cavities. In addition, the whiteness of composite gels decreased with increasing content of OG. CONCLUSION: The addition of 1.0% OG dramatically improved the gelation performance of silver carp surimi, providing a theoretical foundation for the exploitation and manufacture of functional surimi products. © 2023 Society of Chemical Industry.


Asunto(s)
Carpas , Proteínas de Peces , Animales , Proteínas de Peces/química , Manipulación de Alimentos/métodos , Geles/química , Conformación Proteica , Agua , Productos Pesqueros/análisis
17.
Opt Express ; 30(22): 39706-39715, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298916

RESUMEN

It is essential to bias a thin-film lithium-niobate Mach-Zehnder electro-optic (EO) modulator at the desired operation condition to ensure optimal performance of the modulator. While thermo-optic (TO) control can solve the problem of bias drift, it consumes significant electric power. In this paper, we propose a technique to largely reduce bias power consumption by combining passive bias and TO bias. In our design, waveguide sections with different widths are introduced in the two arms of the MZ modulator to produce a desired phase difference of π/2 rad (the desired operation condition), and local heating with electrode heaters placed on the waveguides is employed to provide compensation for any phase drift caused by fabrication errors and other effects. As the TO control only serves to compensate for small errors, the electric power required is low and the response is fast. To demonstrate our technique experimentally, we fabricate several modulators of the same design on the same chip. Our experimental modulators can operate up to ∼40 GHz with a half-wave voltage of ∼2.0 V over a wide optical bandwidth, and the performances are insensitive to ambient temperature variations. The TO bias powers required range from 1 mW to 15 mW, and the thermal rise and fall times are 47 µs and 14 µs, respectively. Our technique can facilitate the development of practical high-speed EO modulators on the lithium-niobate-on-insulator platform.

18.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35912471

RESUMEN

Drug-resistant bacteria are caused by antibiotic abuse and/or biofilm formation and have become a threat to the food industry. Carbon dot (CD)-based nanomaterials are a very promising tools for combating pathogenic and spoilage bacteria, and they possess exceptional and adjustable photoelectric and chemical properties. In view of the rapid development of CD-based nanomaterials and their increasing popularity in the food industry, a comprehensive and updated review is needed to summarize their antimicrobial mechanisms and applications in foods. This review discusses the synthesis of CDs, antimicrobial mechanisms, and their applications for extending the shelf life of food. It includes the synthesis of CDs using small molecules, polymers, and biomass. It also discusses the different antimicrobial mechanisms of CDs and their use as antibacterial agents and carriers/ligands. CD-based materials have proven effective against pathogenic and spoilage bacteria in food by inhibiting planktonic bacteria and biofilms. Optimization of the production parameters of CDs can help them achieve a full-spectral response, but degradability still requires further research.

19.
Crit Rev Food Sci Nutr ; : 1-13, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102134

RESUMEN

Color is an essential criterion for assessing the freshness, quality, and acceptability of red meat and certain fish with red muscle. Myoglobin (Mb), one of the significant pigment substances, is the uppermost reason to keep the color of red meat. Their oxidation and browning are easy to occur throughout the storage and processing period. Natural antioxidants are substances with antioxidant activity extracted from plants, such as plant polyphenols. Consumers prefer natural antioxidants due to safety concerns and limitations on the use of synthetic antioxidants. In recent years, plant polyphenols have been widely used as antioxidants to slow down the deterioration of product quality due to oxidation. As natural antioxidants, it is necessary to strengthen the researches on the antioxidant mechanism of plant polyphenols to solve the discoloration of red meat and certain fish. A fundamental review of the relationship between Mb oxidation and color stability is discussed. The inhibiting mechanisms of polyphenols on lipid and Mb oxidation are presented and investigated. Meanwhile, this review comprehensively outlines applications of plant polyphenols in improving color stability. This will provide reference and theoretical support for the rational application of plant polyphenols in green meat processing.

20.
Fish Shellfish Immunol ; 122: 153-161, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35150827

RESUMEN

Successful viral infection and multiplication chiefly rely on virus subversion mechanisms against host anti-viral immune responses. In this study, in order to reveal the anti-viral immune-related pathways suppressed by megalocytivirus infection, transcriptome analysis was performed on the head-kidney of turbot (Scophthalmus maximus) infected with lethal dose of RBIV-C1 at 3, 6 and 9 days post challenge (dpc). The results showed that, compared to unchallenged groups, 190, 1220, and 3963 DEGs were detected in RBIV-C1 infected groups at 3, 6 and 9 dpc, respectively, of which, DEGs of complement components and pattern recognition proteins were up-regulated at 3 dpc and down-regulated at 6 and 9 dpc, DEGs of cytokines were up-regulated at 6 dpc and down-regulated at 9 dpc. Expression trend analysis revealed that DEGs of profiles 9 and 13 featured decreased expression patterns and were significantly enriched into 10 immune-related pathways, i.e., complement and coagulation cascades, cytokine-cytokine receptor interaction, chemokine signaling pathway, B/T cell receptor signaling pathway, antigen processing and presentation, and so on. Further co-expression network analysis (WGCNA) revealed positive correlated innate immune related pathways at 3 and 6 dpc, and negative correlated innate and adaptive immune related pathways at 9 dpc. This study revealed a set of anti-viral immune genes/pathways that would also be potential targets subverted by RBIV-C1 for immune evasion, which can serve as a valuable resource for future studies on the molecular mechanisms of anti-viral immune defense of turbot and immune escape of megalocytivirus.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Iridoviridae , Animales , Antivirales , Peces Planos/genética , Perfilación de la Expresión Génica/veterinaria , Evasión Inmune , Iridoviridae/fisiología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA