Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 135(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297486

RESUMEN

Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to collagen-activated platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism; they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Our carotid artery intimal injury model indicated that platelets adhered to injured blood vessels. In vitro, phosphorylated Pka (cAMP-dependent protein kinase) content was increased in aPMVs. We also found that aPMVs significantly reduced VSMC glycolysis and increased oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating phosphorylated PRKAA (α catalytic subunit of AMP-activated protein kinase) and phosphorylated FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the enhancement of cellular function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. We show that aPMVs can affect VSMC energy metabolism through the Pka-PRKAA-FoxO1 signaling pathway and this ultimately affects VSMC function, indicating that the shift in VSMC metabolic phenotype by aPMVs can be considered a potential target for the inhibition of hyperplasia. This provides a new perspective for regulating the abnormal activity of VSMCs after injury.


Asunto(s)
Traumatismos de las Arterias Carótidas , Músculo Liso Vascular , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Plaquetas/metabolismo , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Hiperplasia/complicaciones , Hiperplasia/metabolismo , Hiperplasia/patología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/complicaciones , Neointima/metabolismo , Neointima/patología
2.
Inorg Chem ; 63(24): 11354-11360, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842865

RESUMEN

Manipulation of multiemissive luminophores is meaningful for exploring luminescent materials. Herein, we report a soft double salt assembly strategy that could result in well-organized nanostructures and different luminescence based on multiple weak intermolecular interactions thanks to the existence of electrostatic attraction between the anionic and cationic platinum(II) complexes. The cationic complexes B1 and B2 can coassemble with anionic complex A, respectively, and the emission switches from monomeric and excimeric emission to the triplet metal-metal-to-ligand charge transfer (3MMLCT) along with morphology changes from 0-dimensional (0-D) nanospheres to 3-dimensional (3-D) nanostructures. It is demonstrated that an isodesmic growth mechanism is adopted during the spontaneous self-assembly process, and the relative negative ΔG values make the anionic and cationic complex molecules prefer to form aggregates based on π-π stacking, Pt···Pt interactions, and electrostatic interactions. The coassembly strategy between anionic and cationic complexes endows them with multicolor luminescent and apparent color as optical materials for advanced information encryption.

3.
Inorg Chem ; 63(24): 11431-11437, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38814822

RESUMEN

Lead-free organic-inorganic hybrid perovskites are one class of promising optoelectronic materials that have attracted much attention due to their outstanding stability and environmentally friendly nature. However, the intrinsic band gap far from the Shockley-Queisser limit and the inferior electrical properties largely limit their applicability. Here, a considerable band-gap narrowing from 2.43 to 1.64 eV with the compression rate up to 32.5% is achieved via high-pressure engineering in the lead-free hybrid perovskite MA3Sb2I9. Meanwhile, the electric transport process changes from the initial interaction of both ions and electrons to only the contribution of electrons upon compression. The alteration in electrical characteristics is ascribed to the vibration limitation of organic ions and the enhanced orbital overlap, resulting from the reduction of the Sb-I bond length through pressure-induced phase transitions. This work not only systematically investigates the correlation between the structural and optoelectronic properties of MA3Sb2I9 but also provides a potential pathway for optimizing electrical properties in lead-free hybrid perovskites.

4.
Plant Biotechnol J ; 21(12): 2625-2640, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37594728

RESUMEN

High light stress is an important factor limiting crop yield. Light receptors play an important role in the response to high light stress, but their mechanisms are still poorly understood. Here, we found that the abundance of GmPLP1, a positive blue light receptor protein, was significantly inhibited by high light stress and mainly responded to high blue light. GmPLP1 RNA-interference soybean lines exhibited higher light energy utilization ability and less light damage and reactive oxygen species (ROS) accumulation in leaves under high light stress, while the phenotype of GmPLP1:GmPLP1-Flag overexpression soybean showed the opposite characteristics. Then, we identified a protein-protein interaction between GmPLP1 and GmVTC2, and the intensity of this interaction was primarily affected by sensing the intensity of blue light. More importantly, overexpression of GmVTC2b improved soybean tolerance to high light stress by enhancing the ROS scavenging capability through increasing the biosynthesis of ascorbic acid. This regulation was significantly enhanced after interfering with a GmPLP1-interference fragment in GmVTC2b-ox soybean leaves, but was weakened when GmPLP1 was transiently overexpressed. These findings demonstrate that GmPLP1 regulates the photosynthetic capacity and ROS accumulation of soybean to adapt to changes in light intensity by sensing blue light. In summary, this study discovered a new mechanism through which GmPLP1 participates in high light stress in soybean, which has great significance for improving soybean yield and the adaptability of soybean to high light.


Asunto(s)
Glycine max , Fotosíntesis , Especies Reactivas de Oxígeno/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fotosíntesis/genética , Luz , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
5.
Inorg Chem ; 62(27): 10665-10674, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37365822

RESUMEN

Synthesis of chiral molecules for understanding and revealing the expression, transfer, and amplification of chirality is beneficial to explore effective chiral medicines and high-performance chiroptical materials. Herein, we report a series of square-planar phosphorescent platinum(II) complexes adopting a dominantly closed conformation that exhibit efficient chiroptical transfer and enhancement due to the nonclassical intramolecular C-H···O or C-H···F hydrogen bonds between bipyridyl chelating and alkynyl auxiliary ligands as well as the intermolecular π-π stacking and metal-metal interactions. The spectroscopic and theoretical calculation results demonstrate that the chirality and optic properties are regulated from the molecular level to hierarchical assemblies. Notably, a 154 times larger gabs value of the circular dichroism signals is obtained. This study provides a feasible design principle to achieve large chiropticity and control the expression and transfer of the chirality.

6.
Environ Res ; 238(Pt 2): 117269, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776942

RESUMEN

Mixed culture of microorganisms is an effective method to remove high concentration of phenol from wastewater. Currently, the mechanism of how microorganisms collaborate to enhance the biodegradation of phenol is still a challenge. In this study, the isolated Bacillus subtilis ZWB1 and Bacillus velezensis ZWB2 were co-cultured to enhance phenol biodegradation, and the mechanism of microbial collaboration was further explored. The co-culture of strains could significantly increase the rate (16.7 mg/L·h, 1000 mg/L) and concentration of phenol degradation (1500 mg/L), comparing with mono-culture of ZWB1 (4.2 mg/L·h, 150 mg/L) and ZWB2 (6.9 mg/L·h, 1000 mg/L), among which the highest degraded concentration of phenol for ZWB1 and ZWB2 was 150 and 1000 mg/L. Further, the mechanism of microbial collaboration to enhance phenol biodegradation was raised: the decrease of antioxidant enzymes, and increase of degrading enzymes and surfactants on content after co-culture, assisted the microorganisms in withstanding phenol; Bacillus subtilis ZWB1 used the metabolites of Bacillus velezensis ZWB2 to promote its growth, and further to degrade phenol rapidly; Bacillus subtilis ZWB1 alleviated the damage, which resulted from the pH drop (5.8) of the fermentation broth during phenol degradation that inhibited the growth and degraded ability of Bacillus velezensis ZWB2, making the pH of fermentation broth stable at 7. Metabolic analysis showed that co-culture of strains could produce more alkaline and buffering compounds and pairs, to stabilize pH and reduce the toxicity of acidity on ZWB2, thus increasing the degradation rate. This study explains the mechanism of microbial collaboration on phenol biodegradation from multiple perspectives, especially pH stabilization, which provides a theoretical basis for the degradation of pollutants by co-culture microorganisms.


Asunto(s)
Bacillus , Fenol , Fenol/metabolismo , Fenoles/metabolismo , Bacillus/metabolismo , Biodegradación Ambiental , Bacillus subtilis , Concentración de Iones de Hidrógeno
7.
J Med Internet Res ; 25: e48750, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792455

RESUMEN

BACKGROUND: Depression and anxiety are common comorbidities in cardiovascular clinic outpatients. Timely identification and intervention of these mental and psychological disorders can contribute to correct diagnosis, better prognosis, less medical expenses, and improved quality of life. The convenience of online doctor-patient communication platforms has increasingly attracted patients to online consultations. However, online health care and offline health care are very different. Research on how to identify psychological disorders in patients who engage in an online cardiology consultation is lacking. OBJECTIVE: This study aimed to explore the feasibility of using a self-rating scale to assess mental illness among patients who consult with a cardiologist online and to compare the differences in anxiety and depression between online and offline patients. METHODS: From June 2022 to July 2022, we conducted follow-up visits with 10,173 patients on the Haodf platform. We conducted detailed consultations with 286 patients who visited the same cardiologist in the outpatient department. We used the self-rated Generalized Anxiety Disorder (GAD-7) and Patient Health Questionnaire (PHQ-9) scales to assess anxiety and depression, respectively. We analyzed the influencing factors related to the degree of coordination of online patients. We also compared the prevalence of anxiety or depression between online and offline patients and analyzed the factors related to anxiety or depression. RESULTS: Of the 10,173 online consultation patients, only 186 (1.8%) responded effectively. The response rate of the offline consultation patients was 96.5% (276/286). Frequent online communication and watching live video broadcasts were significantly related to effective responses from online patients (P<.001). The prevalence of anxiety (70/160, 43.7% vs 69/266, 25.8%; P<.001) or depression (78/160, 48.7% vs 74/266, 27.7%; P<.001) in online consultation patients was significantly higher than that in offline patients. In bivariate analyses, the factors related to anxiety included female sex, unemployment, no confirmed cardiovascular disease, and the online consultation mode, while smokers and those who underwent COVID-19 quarantine were less likely to present with anxiety. The factors related to depression included female sex, divorced or separated individuals, and the online consultation mode. COVID-19 quarantine was related with a lower likelihood of depression. BMI was negatively correlated with depression. In multiple ordered logistic regression analysis, women were more likely than men to present with anxiety (odds ratio [OR] 2.181, 95% CI 1.365-3.486; P=.001). Women (OR 1.664, 95% CI 1.082-2.559; P=.02) and online patients (OR 2.631, 95% CI 1.305-5.304; P=.007) were more likely to have depression. CONCLUSIONS: Online patients had more anxiety or depression than offline patients. Anxiety was more prevalent in women, the unemployed, and those without confirmed cardiovascular disease. Women and divorced or separated individuals were more prone to depression. Increasing the frequency of doctor-patient communication and participating in video interactions can help improve patient cooperation.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Aplicaciones Móviles , Masculino , Humanos , Femenino , Enfermedades Cardiovasculares/epidemiología , Estudios Transversales , Depresión/diagnóstico , Depresión/epidemiología , Calidad de Vida , Ansiedad/diagnóstico , Ansiedad/epidemiología , Trastornos de Ansiedad , Pacientes Ambulatorios
8.
Sensors (Basel) ; 23(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514813

RESUMEN

In this paper, the wind-induced responses of the Shanghai World Financial Center (SWFC) under Super Typhoon Lekima are measured using the health monitoring system. Based on the measurements, the characteristics of vibration, including probability density distribution of accelerations, power spectra, and mode shapes are studied. The curve method and the standard deviation method are used to analyze the relationship of the first- and second-order natural frequencies and damping ratios with amplitudes and the mean wind speed. The results show the following: (1) The structural wind-induced responses in the X and Y directions have high consistencies, and the vibration signals exhibit a peak state; moreover, response amplitudes and acceleration signals disperse when the floor height increases. (2) The first- and second-order natural frequencies in the X and Y directions decrease with the increasing amplitudes and are negatively correlated with mean wind speed; the maximum decrease in natural frequency is 5.794%. The first- and second-order damping ratios in the X and Y directions increase with the increasing amplitudes and are positively correlated with the mean wind speed; the maximum increase in damping ratio is 95.7%. (3) The curve method and the standard deviation method are similar in identifying dynamic characteristic parameters, but the discreteness of the natural frequencies obtained by the curve method is lesser. (4) Under excitations of various typhoons, the mode shapes of SWFC are basically the same, and the mode shapes in the X and Y directions increase with the height and have nonlinearity.

9.
Proc Natl Acad Sci U S A ; 116(28): 13856-13861, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243146

RESUMEN

With the rapidly growing exploration of artificial molecular machines and their applications, there is a strong demand to develop molecular machines that can have their motional states and configuration/conformation changes detectable by more sensitive and innovative methods. A visual artificial molecular hinge with phosphorescence behavior changes is designed and synthesized using square-planar cyclometalated platinum(II) complex and rigid aromatic alkynyl groups as the building blocks to construct the wings/flaps and axis, respectively. The molecular motions of this single molecular hinge and its reversible processes can be powered by both solvent and temperature changes. The rotary motion can be conveniently observed by the visual phosphorescence changes from deep-red to green emission in real time.

10.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35162952

RESUMEN

Soybean [Glycine max (L.) Merr.] is an important oil crop that provides valuable resources for human consumption, animal feed, and biofuel. Through the transcriptome analysis in our previous study, GmLecRlk (Glyma.07G005700) was identified as a salt-responsive candidate gene in soybean. In this study, qRT-PCR analysis showed that the GmLecRlk gene expression level was significantly induced by salt stress and highly expressed in soybean roots. The pCAMBIA3300-GmLecRlk construct was generated and introduced into the soybean genome by Agrobacterium rhizogenes. Compared with the wild type (WT), GmLecRlk overexpressing (GmLecRlk-ox) soybean lines had significantly enhanced fresh weight, proline (Pro) content, and catalase (CAT) activity, and reduced malondialdehyde (MDA) and H2O2 content under salt stress. These results show that GmLecRlk gene enhanced ROS scavenging ability in response to salt stress in soybean. Meanwhile, we demonstrated that GmLecRlk gene also conferred soybean salt tolerance when it was overexpressed alone in soybean hairy root. Furthermore, the combination of RNA-seq and qRT-PCR analysis was used to determine that GmLecRlk improves the salt tolerance of soybean by upregulating GmERF3, GmbHLH30, and GmDREB2 and downregulating GmGH3.6, GmPUB8, and GmLAMP1. Our research reveals a new mechanism of salt resistance in soybean, which exposes a novel avenue for the cultivation of salt-resistant varieties.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Glycine max/crecimiento & desarrollo , Proteínas Quinasas/genética , Regulación hacia Arriba , Catalasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Malondialdehído/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Prolina/metabolismo , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tolerancia a la Sal , Análisis de Secuencia de ARN , Glycine max/genética , Glycine max/metabolismo
11.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806245

RESUMEN

Soybean is sensitive to drought stress, and increasing tolerance to drought stresses is an important target for improving the performance of soybean in the field. The genetic mechanisms underlying soybean's drought tolerance remain largely unknown. Via a genome-wide association study (GWAS) combined with linkage analysis, we identified 11 single-nucleotide polymorphisms (SNPs) and 22 quantitative trait locus (QTLs) that are significantly associated with soybean drought tolerance. One of these loci, namely qGI10-1, was co-located by GWAS and linkage mapping. The two intervals of qGI10-1 were differentiated between wild and cultivated soybean. A nuclear factor Y transcription factor, GmNFYB17, was located in one of the differentiated regions of qGI10-1 and thus selected as a candidate gene for further analyses. The analysis of 29 homologous genes of GmNFYB17 in soybean showed that most of the genes from this family were involved in drought stress. The over-expression of GmNFYB17 in soybean enhanced drought resistance and yield accumulation. The transgenic plants grew better than control under limited water conditions and showed a lower degree of leaf damage and MDA content but higher RWC, SOD activity and proline content compared with control. Moreover, the transgenic plants showed a fast-growing root system, especially regarding a higher root-top ratio and more branching roots and lateral roots. The better agronomic traits of yield were also found in GmNFYB17 transgenic plants. Thus, the GmNFYB17 gene was proven to positively regulate drought stress resistance and modulate root growth in soybean. These results provide important insights into the molecular mechanisms underlying drought tolerance in soybean.


Asunto(s)
Sequías , Glycine max , Factor de Unión a CCAAT , Estudio de Asociación del Genoma Completo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética
12.
J Am Chem Soc ; 143(51): 21676-21684, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34907777

RESUMEN

Platinum(II) complexes as supramolecular luminescent materials have received considerable attention due to their unique planar structures and fascinating photophysical properties. However, the molecular design of platinum(II) complexes with impressive circularly polarized luminescence properties still remains challenging and rarely explored. Herein, we reported a series of cyclometalated platinum(II) complexes with benzaldehyde and its derived imine-containing alkynyl ligands to investigate their phosphorescent, chiroptical, and self-assembly behaviors. An isodesmic growth mechanism is found for their temperature-dependent self-assembly process. The chiral sense of the enantiomers can be transferred from the chiral alkynyl ligands to the cyclometalated platinum(II) dipyridylbenzene N^C^N chromophore and further amplified through supramolecular assembly via intermolecular noncovalent interactions. Notably, distinctive phosphorescent properties and nanostructured morphologies have been found for enantiomers 4R and 4S. Their intriguing self-assembled nanostructures and phosphorescence behaviors are supported by crystal structure determination, 1H NMR, emission, and UV-vis absorption spectroscopy, scanning electron microscopy, and X-ray powder diffraction studies.

13.
J Am Chem Soc ; 143(28): 10659-10667, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34232026

RESUMEN

In this work, through the introduction of different lengths of alkoxy chains to the dinuclear cyclometalated platinum(II) complexes, the apparent color, solubility, luminescence properties, and self-assembly behaviors have been remarkably modulated. In the solid state, the luminescence properties have been found to arise from emission origins that switch between the 3MMLCT excited state in the red solids and the 3IL excited state in the yellow state, depending on the alkoxy chain lengths. The luminescence of the yellow solids is found to show obvious bathochromic shifts under mechanical grinding and decreased intensity under controllable hydrostatic pressure. However, the emission of the red solids exhibits both a bathochromic shift and reduced intensity due to the isotropic compression-induced shortening of the Pt···Pt and π-π distances. By combining the data obtained from X-ray diffraction (XRD), infrared (IR), and X-ray single crystal structure, a better understanding of the relationship between molecular aggregation and photophysical properties has been realized, suggesting that the length of the alkoxy chains plays an important role in governing the supramolecular assemblies.

14.
Mol Biol Rep ; 48(2): 1589-1599, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33512627

RESUMEN

Nuclear Factor Y (NF-Y) gene family regulates numbers of flowering processes. Two independent transgenic Arabidopsis lines overexpressing (OX) GmNFY-B1 and GmNFYB1-GR (GmNFYB1 fused with the glucocorticoid receptor) were used to investigate the function of NFY-B1 in flowering. Furthermore, GmNFYB1-GR lines were chemically treated with dexamethasone (Dex, synthetic steroid hormone), cycloheximide (Cyc, an inhibitor of protein biosynthesis), and ethanol to examine their effects on different flowering related marker genes. Our results indicated that the transgenic lines produced longer hypocotyl lengths and had fewer numbers of rosette leaves compared to the wild-type and nf-yb1 mutant plants under both long and short-day (LD and SD) conditions. The qRT-PCR assays revealed that transcript levels of all flowering time regulating genes, i.e. SOC, FLC, FT, TSF, LFY, GI2, AGL, and FCA showed higher transcript abundance in lines OX GmNFYB1-GR. However, FT and GI genes showed higher transcript levels under Dex and Dex/Cyc treatments compared to Cyc and ethanol. Additionally, 24 differentially expressed genes were identified and verified through RNA-seq and RT-qPCR in GmNF-YB1-GR lines under Cyc and Dex/Cyc treatments from which 14 genes were up-regulated and 10 were down-regulated. These genes are involved in regulatory functions of circadian rhythm, regulation of flower development in photoperiodic, and GA pathways. The overexpression of GmNF-YB1 and GmNF-YB1-GR promote flowering through the higher expression of flowering-related genes. Further GmNF-YB1 and its attachment with the GR receptor can regulate its target genes under Dex/Cyc treatment and might act as flowering inducer under LD and SD conditions.


Asunto(s)
Factor de Unión a CCAAT/genética , Flores/genética , Glycine max/genética , Proteínas de Soja/genética , Arabidopsis/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Factores de Transcripción/genética
15.
Angew Chem Int Ed Engl ; 60(8): 4150-4157, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33174359

RESUMEN

The organoplatinum(II) complex [Pt(C^N^N)(Cl)] (C^N^N=5,6-diphenyl-2,2'-bipyridine, Pt1) can assemble into nanoaggregates via π-π stacking and complementary hydrogen bonds, rather than Pt-Pt interactions. Pt1 exhibits ratiometric dual emission, including rare blue emission (λem =445 nm) and assembly-induced yellow emission (λem =573 nm), under one- and two-photon excitation. Pt1 displays blue emission in cells with an intact membrane due to its low cellular uptake. In cells where the membrane is disrupted, uptake of the complex is increased and at higher concentrations yellow emission is observed. The ratio of yellow to blue emission shows a linear relationship to the loss of cell membrane integrity. Pt1 is, to our knowledge, the first example of an assembly-induced two-photon ratiometric dual emission organoplatinum complex. The excellent and unique characteristics of the complex enabled its use for the tracking of cell apoptosis, necrosis, and the inflammation process in zebrafish.


Asunto(s)
Complejos de Coordinación/química , Microscopía de Fluorescencia por Excitación Multifotónica , Platino (Metal)/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Humanos , Inflamación/inducido químicamente , Inflamación/diagnóstico por imagen , Larva/química , Larva/metabolismo , Piridinas/química , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
16.
Angew Chem Int Ed Engl ; 59(48): 21525-21529, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-32789978

RESUMEN

Rapid and selective removal of micropollutants from water is important for the reuse of water resources. Despite hollow frameworks with specific functionalized porous walls for the selective adsorption based on a series of interactions, tailoring a stable shape of nanometer- and micrometer-sized architectures for the removal of specific pollutants remains a challenge. Here, exactly controlled sheets, tubes, and spherical frameworks were presented from the crosslinking of supramolecular colloids in polar solvents. The frameworks strongly depended on the architecture of original supramolecular colloids. As the entropy of colloids increased, the initial laminar framework rolled up into hollow tubules, and then further curled into hollow spheres. These shape-persistent frameworks showed unprecedented selectivity as well as specific recognition for the shape of pollutants, thus contributing to efficient pollutant separation.

17.
Chemistry ; 25(20): 5251-5258, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30680815

RESUMEN

An l-glutamine-derived functional group was introduced to the bis(arylalkynyl)platinum(II) bipyridine complexes 1-4. The emission could be switched between the 3 MLCT excited state and the triplet excimeric state through solvent or temperature changes, which is attributed to the formation and disruption of hydrogen-bonding, π-π stacking, and metal-metal interactions. Different architectures with various morphologies, such as honeycomb nanostructures and nanospheres, were formed upon solvent variations, and these changes were accompanied by 1 H NMR and distinct emission changes. Additionally, yellow and red emissive metallogels were formed at room temperature due to the different aggregation behaviors introduced by the substituent groups on bipyridine. The thermoresponsive metallogel showed emission behavior with tunable colors by controlling the temperature. The negative Gibbs free-energy change (ΔG) and the large association constant for excimer formation have suggested that the molecules undergo aggregation through hydrogen-bonding, π-π, and metal-metal interactions, resulting in triplet excimeric emission.

18.
Biochem Biophys Res Commun ; 497(1): 160-166, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29428735

RESUMEN

Germin-like proteins (GLPs) are ubiquitous water-soluble glycoproteins that are located in the extracellular matrix. These proteins have been reported to play vital roles in diverse biological processes. In the present study, a GLP in soybean (Glycine max L. Merr.), GmGLP10, was characterized. Sequence analysis revealed that the GmGLP10 gene (GenBank Accession Number EU916258) encodes a 213-amino acid (aa) protein, which contains a N-terminal signal peptide at 1-22 aa and is highly homologous to the members of the GER2 subfamily. GmGLP10 was highly expressed in the leaves, but very faint in the roots. The expression of GmGLP10 was induced by methyl jasmonate (MeJA), ethylene (ET), salicylic acid (SA), oxalate acid (OA), and the infection of Sclerotinia sclerotiorum. Overexpression of GmGLP10 in transgenic tobacco significantly enhanced tolerance to OA and S. sclerotiorum infection. Moreover, higher levels of H2O2 and the upregulated expression of a set of plant defense-related genes and HR (hypersensitive response)-associated genes were detected in the transgenic plants. These results suggest that GmGLP10 functions as a positive regulator of resistance to S. sclerotiorum.


Asunto(s)
Ascomicetos/fisiología , Glicoproteínas/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/microbiología , Plantas Modificadas Genéticamente/fisiología , Resistencia a la Enfermedad/fisiología , Mejoramiento Genético/métodos , Glicoproteínas/genética , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/genética , Regulación hacia Arriba
19.
Chemistry ; 24(58): 15596-15602, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30221406

RESUMEN

A series of newly designed and synthesized diacetylene-containing platinum(II) terpyridine complexes exhibited intriguing self-assembly properties. Facilitated by Pt⋅⋅⋅Pt, π-π stacking, hydrogen-bonding and hydrophobic-hydrophobic interactions, these complexes are preorganized to readily undergo topochemical polymerization reactions upon photoirradiation. The in situ polymerization of the diacetylene units to form polydiacetylene, indicated by the UV/Vis spectral changes, gel permeation chromatography and dynamic light scattering, was found to alter their assembly behaviours, as revealed by TEM images.

20.
Chemistry ; 24(45): 11611-11618, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30063269

RESUMEN

A series of bipyridine platinum(II) complexes with different sizes of triangular metallacycles and alkyl/oligoether chains has been synthesized and characterized. They are packed in a zig-zag fashion with the formation of dimeric structures according to their X-ray crystal structures. Different emission origins are observed due to the different sizes of the triangular ligands. Their morphologies could be tuned by the modification of the molecular structures with different metallacyclic alkynyl ligands and alkyl/oligoether chains and solvents. More interestingly, unusual electronic absorption changes and upfield shifts of the aromatic proton resonances are observed upon increasing the temperature, suggesting further aggregation of the architectures. Near-infrared (NIR) emission is also realized through the tuning of the π-π stacking, Pt⋅⋅⋅Pt interactions, and the packing of planar metallacycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA