Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 596, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914948

RESUMEN

BACKGROUND: Cliffs are recognized as one of the most challenging environments for plants, characterized by harsh conditions such as drought, infertile soil, and steep terrain. However, they surprisingly host ancient and diverse plant communities and play a crucial role in protecting biodiversity. The Taihang Mountains, which act as a natural boundary in eastern China, support a rich variety of plant species, including many unique to cliff habitats. However, it is little known how cliff plants adapt to harsh habitats and the demographic history in this region. RESULTS: To better understand the demographic history and adaptation of cliff plants in this area, we analyzed the chromosome-level genome of a representative cliff plant, T. rupestris var. ciliata, which has a genome size of 769.5 Mb, with a scaffold N50 of 104.92 Mb. The rapid expansion of transposable elements may have contributed to the increasing genome and its ability to adapt to unique and challenging cliff habitats. Comparative analysis of the genome evolution between Taihangia and non-cliff plants in Rosaceae revealed a significant expansion of gene families associated with oxidative phosphorylation, which is likely a response to the abiotic stresses faced by cliff plants. This expansion may explain the long-term adaptation of Taihangia to harsh cliff environments. The effective population size of the two varieties has continuously decreased due to climatic fluctuations during the Quaternary period. Furthermore, significant differences in gene expression between the two varieties may explain the varied leaf phenotypes and adaptations to harsh conditions in different natural distributions. CONCLUSION: Our study highlights the extraordinary adaptation of T. rupestris var. ciliata, shedding light on the evolution of cliff plants worldwide.


Asunto(s)
Adaptación Fisiológica , Cromosomas de las Plantas , Genoma de Planta , China , Cromosomas de las Plantas/genética , Adaptación Fisiológica/genética , Rosaceae/genética , Rosaceae/fisiología , Ecosistema , Evolución Molecular
2.
BMC Plant Biol ; 24(1): 476, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816799

RESUMEN

BACKGROUND: Interest in the evolution of climatic niches, particularly in understanding the potential adaptive responses of species under climate change, has increased both theoretically and within macroecological studies. These studies have provided valuable insights into how climatic traits of species influence their niche evolution. In this study, we aim to investigate whether niche conservatism plays a role in the species diversification of Nymphaea, a group of aquatic plants with a cosmopolitan distribution that is facing severe habitat loss. We will use climatic models and phylogenetic data for 23 species to reconstruct Nymphaea's niche evolution, measure niche overlap, and assess disparity through time while testing for evolutionary models. RESULTS: There was a lot of overlap in niches both within and between groups, especially for species that can be found in many places. The breadth and peaks of the niche profile varied depending on the bioclimatic variables, which suggested that the species evolved differently to cope with changes in climate. The analysis also showed that evolutionary changes happened across the phylogeny, with weak to moderate signals. The morphological disparity index (MDI) values indicated that there were disparities within subclades over time but not between or among them. Niche reconstruction and evolution analysis revealed both convergent and divergent evolution among various variables. For example, N. immutabilis, N. atrans, N. violancea, and N. nouchali evolved towards intermediate temperatures for bio2 and bio3 (isothermity) while moving towards extreme temperatures for bio8 and bio9 (wettest and driest average quarterly temperatures). CONCLUSION: Our study will improve our understanding of how changes in climatic niches are potentially driving the evolution of Nymphaea. It has significant scientific implications for the limits, assemblages, evolution, and diversification of species. This information is crucial for the ongoing efforts of conservation and management, particularly considering the inevitable effects of climate change.


Asunto(s)
Evolución Biológica , Clima , Ecosistema , Filogenia , América del Sur , Australia , África , Cambio Climático
3.
BMC Plant Biol ; 23(1): 125, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869282

RESUMEN

BACKGROUND: The rapidly increasing availability of complete plastomes has revealed more structural complexity in this genome under different taxonomic levels than expected, and this complexity provides important evidence for understanding the evolutionary history of angiosperms. To explore the dynamic history of plastome structure across the subclass Alismatidae, we sampled and compared 38 complete plastomes, including 17 newly assembled, representing all 12 recognized families of Alismatidae. RESULT: We found that plastomes size, structure, repeat elements, and gene content were highly variable across the studied species. Phylogenomic relationships among families were reconstructed and six main patterns of variation in plastome structure were revealed. Among these, the inversion from rbcL to trnV-UAC (Type I) characterized a monophyletic lineage of six families, but independently occurred also in Caldesia grandis. Three independent ndh gene loss events were uncovered across the Alismatidae. In addition, we detected a positive correlation between the number of repeat elements and the size of plastomes and IR in Alismatidae. CONCLUSION: In our study, ndh complex loss and repeat elements likely contributed to the size of plastomes in Alismatidae. Also, the ndh loss was more likely related to IR boundary changes than the adaptation of aquatic habits. Based on existing divergence time estimation, the Type I inversion may have occurred during the Cretaceous-Paleogene in response to the extreme paleoclimate changes. Overall, our findings will not only allow exploring the evolutionary history of Alismatidae plastome, but also provide an opportunity to test if similar environmental adaptations result in convergent restructuring in plastomes.


Asunto(s)
Alismatales , Magnoliopsida , Aclimatación , Evolución Biológica , Filogenia
4.
J Hered ; 114(5): 570-579, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37335172

RESUMEN

Juglans californica, California walnut, is a vulnerable small tree that is locally abundant but restricted to woodland and chaparral habitats of Southern California threatened by urbanization and land use change. This species is the dominant species in a unique woodland ecosystem in California. It is one of 2 endemic California walnut species (family Juglandaceae). The other species, Northern California black walnut (J. hindsii), has been suggested controversially to be a variety of J. californica. Here, we report a new, chromosome-level assembly of J. californica as part of the California Conservation Genomics Project (CCGP). Consistent with the CCGP common methodology across ~150 genomes, we used Pacific Biosciences HiFi long reads and Omni-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises 137 scaffolds spanning 551,065,703 bp, has a contig N50 of 30 Mb, a scaffold N50 of 37 Mb, and BUSCO complete score of 98.9%. Additionally, the mitochondrial genome has 701,569 bp. In addition, we compare this genome with other existing high-quality Juglans and Quercus genomes, which are in the same order (Fagales) and show relatively high synteny within the Juglans genomes. Future work will utilize the J. californica genome to determine its relationship with the Northern California walnut and assess the extent to which these 2 endemic trees might be at risk from fragmentation and/or climate warming.


Asunto(s)
Juglans , Juglans/genética , Ecosistema , Genoma , Genómica/métodos , California
5.
BMC Plant Biol ; 22(1): 106, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260081

RESUMEN

BACKGROUND: Hydrocharis L. and Limnobium Rich. are small aquatic genera, including three and two species, respectively. The taxonomic status, phylogenetic relationships and biogeographical history of these genera have remained unclear, owing to the lack of Central African endemic H. chevalieri from all previous studies. We sequenced and assembled plastomes of all three Hydrocharis species and Limnobium laevigatum to explore the phylogenetic and biogeographical history of these aquatic plants. RESULTS: All four newly generated plastomes were conserved in genome structure, gene content, and gene order. However, they differed in size, the number of repeat sequences, and inverted repeat borders. Our phylogenomic analyses recovered non-monophyletic Hydrocharis. The African species H. chevalieri was fully supported as sister to the rest of the species, and L. laevigatum was nested in Hydrocharis as a sister to H. dubia. Hydrocharis-Limnobium initially diverged from the remaining genera at ca. 53.3 Ma, then began to diversify at ca. 30.9 Ma. The biogeographic analysis suggested that Hydrocharis probably originated in Europe and Central Africa. CONCLUSION: Based on the phylogenetic results, morphological similarity and small size of the genera, the most reasonable taxonomic solution to the non-monophyly of Hydrocharis is to treat Limnobium as its synonym. The African endemic H. chevalieri is fully supported as a sister to the remaining species. Hydrocharis mainly diversified in the Miocene, during which rapid climate change may have contributed to the speciation and extinctions. The American species of former Limnobium probably dispersed to America through the Bering Land Bridge during the Miocene.


Asunto(s)
Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Evolución Molecular , Genoma de Plastidios , Hydrocharitaceae/clasificación , Hydrocharitaceae/genética , Filogeografía , Europa (Continente)
6.
Mol Phylogenet Evol ; 166: 107334, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715331

RESUMEN

Alismataceae, an ancient lineage of monocots, has attracted attention due to its complex evolutionary history, ornamental value, and ecological role. However, the phylogenetic relationships and evolutionary history of the family have not been conclusively resolved. Here, we constructed the first complete genus-level plastid phylogeny of Alismataceae by using 78 genes and updated the historical biogeography based on the phylogenomic tree. Our results divide the Alismataceae into three major clades with robust support values; one clade comprises the former Limnocharitaceae, and the second clade includes the mainly temperate genera Alisma, Baldellia, Damasonium and Luronium, and the monotypic African genus Burnatia as a sister of the temperate genera. The remaining genera are either tropical or have some temperate species in addition to tropical ones, and they constitute the third major clade. Molecular dating and biogeographic analyses suggest that Alismataceae arose in Neotropical, West Palearctic, and Afrotropical regions during the Cretaceous, followed by the split into three main clades due to a combination of vicariance and dispersal events. Unlike earlier studies, we inferred that the mainly temperate clade likely originated from Afrotropical and West Palearctic regions during the Eocene. The most recent common ancestor of the other two clades lived in the Neotropical area during the Late Cretaceous. Long-distance dispersal and vicariance together seem to contribute to the transoceanic distribution of this family.


Asunto(s)
Alismataceae , Evolución Biológica , Filogenia , Filogeografía , Plastidios/genética
7.
Mol Biol Rep ; 49(2): 917-929, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34741709

RESUMEN

BACKGROUND: Understanding genetic variation is critical for the protection and maintenance of fragmented and highly disturbed habitats. The Taita Hills of Kenya are the northernmost part of the Eastern Arc Mountains and have been identified as one of the world's top ten biodiversity hotspots. Over the past century the current forests in the Taita Hills have become highly fragmented. In order to appraise the influence of anthropological disturbance and fragmentation on plant species in these mountains, we studied the genetic variation and population structure of Dodonaea viscosa (L.) Jacq. (Sapindaceae), using newly developed microsatellite (SSR) markers, combined with ecological niche modelling analyses (ENMs). METHODS AND RESULTS: We utilized the Illumina paired-end technology to sequence D. viscosa's genome and developed its microsatellite markers. In total, 646,428 sequences were analyzed, and 49,836 SSRs were identified from 42,638 sequences. A total of 18 out of 25 randomly selected primer pairs were designed to test polymorphism among 92 individuals across eight populations. The average observed heterozygosity and expected heterozygosity ranged from 0.119 to 0.982 and from 0.227 to 0.691, respectively. Analysis of molecular variance (AMOVA) revealed 78% variance within populations and only 20% among the eight populations. According to ENM results, D. viscosa's suitable habitats have been gradually reducing since the last glacial maximum (LGM), and the situation will worsen under the extreme pessimist scenario of (representative concentration pathway) RCP 8.5. Moreover, genetic diversity was significantly greater in larger fragments. CONCLUSIONS: In the present study, we successfully developed and tested SSR markers for D. viscosa. Study results indicate that fragmentation would constitute a severe threat to plant forest species. Therefore, urgent conservation management of smaller fragmented patches is necessary to protect this disturbed region and maintain the genetic resources.


Asunto(s)
Repeticiones de Microsatélite/genética , Sapindaceae/genética , Conservación de los Recursos Naturales , Bosques , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Kenia , Polimorfismo Genético/genética
8.
J Neuroinflammation ; 18(1): 64, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653377

RESUMEN

BACKGROUND: Immune cell infiltration and neuroinflammation are heavily associated with spinal cord injury (SCI). C-C motif chemokine ligand 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis has been identified as a critical role player during the invasion of immune cells to lesions in many diseases. γδ T cells, a subgroup of T cells, manage the course of inflammation response in various diseases; however, it remains unknown whether γδ T cells are recruited to injury site through CCL2/CCR2 signaling and exert the regulation effect on neuroinflammation after SCI. METHODS: Basso Mouse Scale (BMS), regularity index, cadence, max contact area, and motor-evoked potential testing (MEP) were measured to determine the neurological function recovery after spinal cord injury. Nissl staining was performed to identify the number of surviving motor neurons at lesion epicenter. Immunofluorescence, Western blot, enzyme-linked immunosorbent assays (ELISA), and quantitative real-time polymerase chain reaction (QRT-PCR) also were employed to evaluate the expression of associated proteins and genes. RESULTS: In this study, we demonstrated that TCRδ-/- mice present improved neurological recovery after SCI. γδ T cell recruitment to the SCI site was significantly reduced and motor functional improvement enhanced in CCL2-/- and CCR2-/- mouse strains. Furthermore, reconstitution of TCRδ-/- mice with γδ T cells extracted from CCR2-/- mice also showed similar results to CCL2 and CCR2 deficient mice. CONCLUSIONS: In conclusion, γδ T cell recruitment to SCI site promotes inflammatory response and exacerbates neurological impairment. CCL2/CCR2 signaling is a vital recruitment mechanism of γδ T cells to the SCI site, and it may be taken as a novel therapeutic target for future SCI.


Asunto(s)
Quimiocina CCL2/inmunología , Receptores CCR2/inmunología , Transducción de Señal/inmunología , Traumatismos de la Médula Espinal/inmunología , Linfocitos T/inmunología , Animales , Quimiocina CCL2/metabolismo , Quimiotaxis de Leucocito/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores CCR2/metabolismo , Traumatismos de la Médula Espinal/patología , Linfocitos T/metabolismo
9.
Mol Biol Rep ; 48(3): 2007-2023, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33730287

RESUMEN

Ailanthus altissima Swingle, is a tree species native to East Asia and has a great potential in decorative, bioenergy and industrial applications in many countries. To date, despite its commercial importance, the genomic and genetic resources available for this species are still insufficient. In this study, we characterized the transcriptome of A. altissima and developed thirteen EST-SSRs (expressed sequence tag-simple sequence repeats) based on Illumina paired-end RNA sequencing (RNA-seq). Besides, we developed ten polymorphic chloroplast microsatellite (cpSSR) markers using the available chloroplast genome of A. altissima. The transcriptome data produced 87,797 unigenes, of which 64,891 (73.91%) unigenes were successfully annotated in at least one protein database. For cpSSR markers the number of detected alleles (N) per marker varied from three at cpSSR12 to twelve at cpSSR8, the unbiased haploid diversity indices (uh) varied from 0.111 to 0.485, and haploid diversity indices (h) ranged from 0.101 to 0.444 with an average unbiased haploid diversity index (uh) of 0.274. Overall, a total of 65 different cpSSR alleles were identified at the ten loci among 165 individuals of A. altissima. The allele number per locus for EST-SSRs varied from 2.143 to 9.357, and the values of observed and expected heterozygosity ranged from 0.312 to 1.000 and 0.505 to 0.826, respectively. The molecular markers developed in this study will facilitate future genetic diversity, population structure, long distance-gene transfer and pollen-based gene flow analyses of A. altissima populations from its known distribution ranges in China focusing on planted and natural forest stands.


Asunto(s)
Ailanthus/genética , Repeticiones de Microsatélite/genética , Análisis de Secuencia de ARN , Transcriptoma/genética , Cloroplastos/genética , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Sitios Genéticos , Genética de Población , Haplotipos/genética , Anotación de Secuencia Molecular , Filogenia , Polimorfismo Genético
10.
Neurosurg Rev ; 44(3): 1457-1469, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32535873

RESUMEN

Both posterior decompression and fusion (PDF) and laminoplasty (LAMP) have been used to treat cervical myelopathy due to multilevel ossification of posterior longitudinal ligament (OPLL). However, considerable controversy exists over the choice of the two surgical strategies. Thus, the aim of this study is to compare clinical outcomes of PDF and LAMP for treatment of cervical myelopathy due to multilevel OPLL. We searched PubMed, EMBASE and Cochrane Central Register of Controlled Trials database to identify relevant clinical studies compared with clinical outcomes of PDF and LAMP for cervical OPLL. The primary outcomes including Japanese Orthopaedic Association (JOA) score and recovery rate of JOA were evaluated, and the secondary outcomes involving visual analogue scale (VAS), cervical curvature, OPLL progression rate, complication rate, reoperation rate and surgical trauma were also evaluated using Stata software. A total of nine studies were included in the current study, involving 324 patients. The current study suggests that compared with LAMP, PDF achieves a lower OPLL progression rate, better postoperative cervical curvature and similar neurological improvement in the treatment of multilevel cervical OPLL. However, PDF has a higher complication rate, more surgical trauma and higher postoperative VAS than LAMP.


Asunto(s)
Vértebras Cervicales/cirugía , Descompresión Quirúrgica/tendencias , Laminoplastia/tendencias , Osificación del Ligamento Longitudinal Posterior/cirugía , Complicaciones Posoperatorias/etiología , Fusión Vertebral/tendencias , Vértebras Cervicales/patología , Descompresión Quirúrgica/efectos adversos , Humanos , Laminoplastia/efectos adversos , Osificación del Ligamento Longitudinal Posterior/diagnóstico , Dimensión del Dolor/métodos , Dimensión del Dolor/tendencias , Complicaciones Posoperatorias/diagnóstico , Reoperación/tendencias , Estudios Retrospectivos , Fusión Vertebral/efectos adversos , Resultado del Tratamiento
11.
Mol Phylogenet Evol ; 152: 106939, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32791299

RESUMEN

Ottelia Pers. is the second largest genus of the family Hydrocharitaceae, including approximately 23 extant species. The genus exhibits a diversity of both bisexual and unisexual flowers, and complex reproductive system comprising cross-pollinated to cleistogamous flowers. Ottelia has been regarded as a pivotal group to study the evolution of Hydrocharitaceae, but the phylogenic relationships and evolutionary history of the genus remain unresolved. Here, we reconstructed a robust phylogenetic framework for Ottelia using 40 newly assembled complete plastomes. Our results resolved Ottelia as a monophyletic genus consisting of two major clades, which correspond to the main two centers of diversity in Asia and Africa. According to the divergence time estimation analysis, the crown group Ottelia began to diversify around 13.09 Ma during the middle Miocene. The biogeographical analysis indicated the existence of the most recent common ancestor somewhere in Africa/Australasia/Asia. Basing on further insights from the morphological evolution of Ottelia, we hypothesized that the ancestral center of origin was in Africa, from where the range expanded by transoceanic dispersal to South America and Australasia, and further from Australasia to Asia. We suggested that the climatic change and global cooling since the mid-Miocene, such as the development of East Asian monsoon climate and tectonic movement of the Yunnan-Guizhou Plateau (YGP), might have played a crucial role in the evolution of Ottelia in China.


Asunto(s)
Hydrocharitaceae/clasificación , Hydrocharitaceae/genética , Filogenia , Evolución Biológica , Filogeografía , Plastidios/genética
12.
J Plant Res ; 133(3): 373-381, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32162107

RESUMEN

Revealing cryptic diversity is of great importance for effective conservation and understanding macroevolution and ecology of plants. Ottelia, a typical example of aquatic plants, possesses extremely variable morphology and the presence of cryptic diversity makes its classification problematic. Previous studies have revealed cryptic Ottelia species in Asia, but very little is known about the molecular systematics of this genus in Africa, a center of species diversity of Ottelia. In this study, we sampled Ottelia ulvifolia, an endemic species of tropical Africa, from Zambia and Cameroon. We used six chloroplast DNA regions, nrITS and six polymorphic microsatellite markers to estimate the molecular diversity and population genetic structure in O. ulvifolia. The phylogenetic inference, STACEY and STRUCTURE analyses supported at least three clusters within O. ulvifolia, each representing unique flower types (i.e., bisexual yellow flower, unisexual yellow flower and bisexual white flower types). Although abundant genetic variation (> 50%) was observed within the populations, excessive anthropogenic activities may result in genetic drift and bottlenecks. Here, three cryptic species of O. ulvifolia complex are defined, and insights are provided into the taxonomy of Ottelia using the phylogenetic species concept.


Asunto(s)
Genética de Población , Hydrocharitaceae/clasificación , Filogenia , África , Variación Genética , Hydrocharitaceae/genética
13.
Genetica ; 147(5-6): 381-390, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31654262

RESUMEN

Caldesia is a genus in the family Alismataceae mainly found in the tropical and temperate regions of the Northern hemisphere. In China, two species, Caldesia parnassifolia, and Caldesia grandis are recorded as critically endangered in sporadic regions. Available protection of the genetic resource of these threatened species has been impeded due to limited genomic information. Here, we sequence the whole chloroplast (cp) genome of the two Caldesia species using high throughput sequencing technology. The whole cp genomes of C. parnassifolia and C. grandis were 167,647 bp and 168,500 bp, respectively with a typical quadripartite structure. There were 115 unique genes with 81 protein-coding genes, 31 tRNA genes, and four rRNA genes. Both species showed a GC content of 37.1%. A duplication of two tRNA genes and a ~ 6 kb inversion region in the LSC was noted in both species. Mononucleotide simple sequence repeats (SSRs) A/T were most abundant for both Caldesia species. High nucleotide variability was recorded in ycf1 gene and trnK-UUU/rps16 intergenic spacer region. All RNA editing conversions were C-U in 23 and 24 protein-coding genes for C. parnassifolia and C. grandis, respectively. Phylogenetic analysis placed both Caldesia species as sister to Sagittaria lichuanensis. This study will be useful for further evolutionary, systematic researches and conservation of the genus Caldesia.


Asunto(s)
Alismataceae/genética , Genoma del Cloroplasto , Alismataceae/clasificación , Especies en Peligro de Extinción , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Filogenia
14.
Biochem Genet ; 57(4): 522-539, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30734131

RESUMEN

Calotropis gigantea is well known for its aesthetic, medicinal, pharmacological, fodder, fuel, and fiber production potential. Unfortunately, this plant species is still undomesticated, and the genetic information available for crop improvement is limited. For this study, we sampled 21 natural populations of C. gigantea from two key areas of its natural distribution range (Bangladesh and China) and genotyped 379 individuals using nine nuclear microsatellite markers. Population genetic diversity was higher in Bangladesh than that observed in Chinese populations. Overall, a moderate level of genetic diversity was found (Na = 3.73, HE = 0.466), with most of the genetic variation detected within populations (65.49%) and substantial genetic differentiation (FST = 0.345) between the study regions. We observed a significant correlation between genetic and geographic distances (r = 0.287, P = 0.001). The Bayesian clustering, UPGMA tree, and PCoA analyses yielded three distinct genetic pools, but the number of migrants per generation was high (NM = 0.52-2.78) among them. Our analyses also revealed that some populations may have experienced recent demographic bottlenecks. Our study provides a baseline for exploitation of the genetic resources of C. gigantea in domestication and breeding programs as well as some insights into the germplasm conservation of this valuable plant.


Asunto(s)
Calotropis/genética , Bangladesh , China , Conservación de los Recursos Naturales , Productos Agrícolas/genética , ADN de Plantas/genética , Ecosistema , Flujo Génico , Variación Genética , Genética de Población , Genotipo , Repeticiones de Microsatélite , Filogeografía , Fitomejoramiento , Plantas Medicinales/genética
15.
Genetica ; 146(1): 101-113, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29170851

RESUMEN

The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.


Asunto(s)
Genoma del Cloroplasto , Sapindaceae/genética , Genómica , Repeticiones de Microsatélite , Filogenia , Sapindaceae/clasificación , Inversión de Secuencia
16.
Int J Mol Sci ; 19(4)2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29561773

RESUMEN

Ailanthus altissima (Mill.) Swingle (Simaroubaceae) is a deciduous tree widely distributed throughout temperate regions in China, hence suitable for genetic diversity and evolutionary studies. Previous studies in A. altissima have mainly focused on its biological activities, genetic diversity and genetic structure. However, until now there is no published report regarding genome of this plant species or Simaroubaceae family. Therefore, in this paper, we first characterized A. altissima complete chloroplast genome sequence. The tree of heaven chloroplast genome was found to be a circular molecule 160,815 base pairs (bp) in size and possess a quadripartite structure. The A. altissima chloroplast genome contains 113 unique genes of which 79 and 30 are protein coding and transfer RNA (tRNA) genes respectively and also 4 ribosomal RNA genes (rRNA) with overall GC content of 37.6%. Microsatellite marker detection identified A/T mononucleotides as majority SSRs in all the seven analyzed genomes. Repeat analyses of seven Sapindales revealed a total of 49 repeats in A. altissima, Rhus chinensis, Dodonaea viscosa, Leitneria floridana, while Azadirachta indica, Boswellia sacra, and Citrus aurantiifolia had a total of 48 repeats. The phylogenetic analysis using protein coding genes revealed that A. altissima is a sister to Leitneria floridana and also suggested that Simaroubaceae is a sister to Rutaceae family. The genome information reported here could be further applied for evolution and invasion, population genetics, and molecular studies in this plant species and family.


Asunto(s)
Ailanthus/genética , Genoma del Cloroplasto , Clima Tropical , Aminoácidos/genética , Secuencia de Bases , Mapeo Cromosómico , Codón/genética , Reordenamiento Génico/genética , Genes de Plantas , Repeticiones de Microsatélite , Filogenia , Edición de ARN/genética
17.
Int J Mol Sci ; 19(1)2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29360746

RESUMEN

The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length. A total of 115 unique genes were identified in both genomes, of which 80 are protein-coding genes, 31 are distinct transfer RNA (tRNA) and four distinct ribosomal RNA (rRNA). Thirty codons, of which 29 had A/T ending codons, revealed relative synonymous codon usage values of >1, whereas those with G/C ending codons displayed values of <1. The simple sequence repeats comprise mostly the mononucleotide repeats A/T in all examined cp genomes. Phylogenetic analysis based on 51 common protein-coding genes indicated that the Balsaminaceae family formed a lineage with Ebenaceae together with all the other Ericales.


Asunto(s)
Balsaminaceae/genética , Genoma de Planta , Genómica , Impatiens/genética , Balsaminaceae/clasificación , Codón , Evolución Molecular , Genes de Plantas , Genoma del Cloroplasto , Genómica/métodos , Impatiens/clasificación , Repeticiones de Microsatélite , Filogenia , Selección Genética , Análisis de Secuencia de ADN
18.
Biomed Environ Sci ; 28(1): 1-12, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25566858

RESUMEN

OBJECTIVE: To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. METHODS: The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments. RESULTS: The prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution. hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P>0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds. CONCLUSION: The data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction.


Asunto(s)
Desarrollo Óseo/fisiología , Cartílago/crecimiento & desarrollo , Durapatita/química , Ácido Láctico/química , Ácido Poliglicólico/química , Andamios del Tejido/química , Zeína/química , Animales , Materiales Biocompatibles , Células Cultivadas , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/fisiología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Regeneración/fisiología , Adulto Joven
19.
Ecol Evol ; 14(9): e70248, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39219575

RESUMEN

Scheuchzeria palustris, the only species in the Scheuchzeriaceae family, plays a crucial role in methane production and transportation, influencing the global carbon cycle and maintaining ecosystem stability. However, it is now threatened by human activities and global warming. In this study, we generated new organelle genomes for S. palustris, with the plastome (pt) measuring 158,573 bp and the mitogenome (mt) measuring 420,724 bp. We predicted 296 RNA editing sites in mt protein-coding genes (PCGs) and 142 in pt-PCGs. Notably, abundant RNA editing sites in pt-PCGs likely originated from horizontal gene transfer between the plastome and mitogenome. Additionally, we identified positive selection signals in four mt-PCGs (atp4, ccmB, nad3, and sdh4) and one pt-PCG (rps7), which may contribute to the adaptation of S. palustris to low-temperature and high-altitude environments. Furthermore, we identified 35 mitochondrial plastid DNA (MTPT) segments totaling 58,479 bp, attributed to dispersed repeats near most MTPT. Phylogenetic trees reconstructed from mt- and pt-PCGs showed topologies consistent with the APG IV system. However, the conflicting position of S. palustris can be explained by significant differences in the substitution rates of its mt- and pt-PCGs (p < .001). In conclusion, our study provides vital genomic resources to support future conservation efforts and explores the adaptation mechanisms of S. palustris.

20.
Plant Divers ; 46(3): 421-424, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798722

RESUMEN

•Four newly recorded species of Podostemaceae from southern China were identified by molecular and morphological evidence.•17 plastomes of Podostemaceae were newly sequenced and two novel polymorphic barcodes (ccsA and ndhA) detected.•Our findings reveal greater species richness (15 species from five genera) of Podostemaceae in China and supply molecular resources for research on taxonomy and phylogenomics of this enigmatic aquatic family.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA