Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(48): e202207328, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36130864

RESUMEN

The potential for ultrahigh-throughput compartmentalization renders droplet microfluidics an attractive tool for the directed evolution of enzymes. Importantly, it ensures maintenance of the phenotype-genotype linkage, enabling reliable identification of improved mutants. Herein, we report an approach for ultrahigh-throughput screening of an artificial metalloenzyme in double emulsion droplets (DEs) using commercially available fluorescence-activated cell sorters (FACS). This protocol was validated by screening a 400 double-mutant streptavidin library for ruthenium-catalyzed deallylation of an alloc-protected aminocoumarin. The most active variants, identified by next-generation sequencing, were in good agreement with hits obtained using a 96-well plate procedure. These findings pave the way for the systematic implementation of FACS for the directed evolution of (artificial) enzymes and will significantly expand the accessibility of ultrahigh-throughput DE screening protocols.


Asunto(s)
Metaloproteínas , Emulsiones , Metaloproteínas/genética , Microfluídica , Citometría de Flujo , Estreptavidina , Ensayos Analíticos de Alto Rendimiento
2.
Acc Chem Res ; 52(3): 585-595, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30735358

RESUMEN

Artificial metalloenzymes (ArMs) result from anchoring a metal-containing moiety within a macromolecular scaffold (protein or oligonucleotide). The resulting hybrid catalyst combines attractive features of both homogeneous catalysts and enzymes. This strategy includes the possibility of optimizing the reaction by both chemical (catalyst design) and genetic means leading to achievement of a novel degree of (enantio)selectivity, broadening of the substrate scope, or increased activity, among others. In the past 20 years, the Ward group has exploited, among others, the biotin-(strept)avidin technology to localize a catalytic moiety within a well-defined protein environment. Streptavidin has proven versatile for the implementation of ArMs as it offers the following features: (i) it is an extremely robust protein scaffold, amenable to extensive genetic manipulation and mishandling, (ii) it can be expressed in E. coli to very high titers (up to >8 g·L-1 in fed-batch cultures), and (iii) the cavity surrounding the biotinylated cofactor is commensurate with the size of a typical metal-catalyzed transition state. Relying on a chemogenetic optimization strategy, varying the orientation and the nature of the biotinylated cofactor within genetically engineered streptavidin, 12 reactions have been reported by the Ward group thus far. Recent efforts within our group have focused on extending the ArM technology to create complex systems for integration into biological cascade reactions and in vivo. With the long-term goal of complementing in vivo natural enzymes with ArMs, we summarize herein three complementary research lines: (i) With the aim of mimicking complex cross-regulation mechanisms prevalent in metabolism, we have engineered enzyme cascades, including cross-regulated reactions, that rely on ArMs. These efforts highlight the remarkable (bio)compatibility and complementarity of ArMs with natural enzymes. (ii) Additionally, multiple-turnover catalysis in the cytoplasm of aerobic organisms was achieved with ArMs that are compatible with a glutathione-rich environment. This feat is demonstrated in HEK-293T cells that are engineered with a gene switch that is upregulated by an ArM equipped with a cell-penetrating module. (iii) Finally, ArMs offer the fascinating prospect of "endowing organometallic chemistry with a genetic memory." With this goal in mind, we have identified E. coli's periplasmic space and surface display to compartmentalize an ArM, while maintaining the critical phenotype-genotype linkage. This strategy offers a straightforward means to optimize by directed evolution the catalytic performance of ArMs. Five reactions have been optimized following these compartmentalization strategies: ruthenium-catalyzed olefin metathesis, ruthenium-catalyzed deallylation, iridium-catalyzed transfer hydrogenation, dirhodium-catalyzed cyclopropanation and carbene insertion in C-H bonds. Importantly, >100 turnovers were achieved with ArMs in E. coli whole cells, highlighting the multiple turnover catalytic nature of these systems.


Asunto(s)
Biotina/química , Enzimas/química , Metaloproteínas/química , Estreptavidina/química , Catálisis , Dominio Catalítico/genética , Evolución Molecular Dirigida , Enzimas/genética , Escherichia coli/genética , Células HEK293 , Humanos , Metaloproteínas/genética , Estreptavidina/genética
3.
J Am Chem Soc ; 137(33): 10520-3, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26267757

RESUMEN

Toluene/o-xylene monooxygenase (ToMO) is a non-heme diiron protein that activates O2 for subsequent arene oxidation. ToMO utilizes four protein components, a catalytic hydroxylase, a regulatory protein, a Rieske protein, and a reductase. O2 activation and substrate hydroxylation in the presence of all four protein components is examined. These studies demonstrate the importance of native reductants by revealing reactivity unobserved when dithionite and mediators are used as the reductant. This reactivity is compared with that of other O2-activating diiron enzymes.


Asunto(s)
Oxígeno/química , Oxigenasas/metabolismo , Dominio Catalítico , Hidrocarburos Aromáticos/química , Oxidación-Reducción , Oxigenasas/química
4.
Biochemistry ; 53(47): 7368-75, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25402597

RESUMEN

The multicomponent protein toluene/o-xylene monooxygenase (ToMO) activates molecular oxygen to oxidize aromatic hydrocarbons. Prior to dioxygen activation, two electrons are injected into each of two diiron(III) units of the hydroxylase, a process that involves three redox active proteins: the ToMO hydroxylase (ToMOH), Rieske protein (ToMOC), and an NADH oxidoreductase (ToMOF). In addition to these three proteins, a small regulatory protein is essential for catalysis (ToMOD). Through steady state and pre-steady state kinetics studies, we show that ToMOD attenuates electron transfer from ToMOC to ToMOH in a concentration-dependent manner. At substoichiometric concentrations, ToMOD increases the rate of turnover, which we interpret to be a consequence of opening a pathway for oxygen transport to the catalytic diiron center in ToMOH. Excess ToMOD inhibits steady state catalysis in a manner that depends on ToMOC concentration. Through rapid kinetic assays, we demonstrate that ToMOD attenuates formation of the ToMOC-ToMOH complex. These data, coupled with protein docking studies, support a competitive model in which ToMOD and ToMOC compete for the same binding site on the hydroxylase. These results are discussed in the context of other studies of additional proteins in the superfamily of bacterial multicomponent monooxygenases.


Asunto(s)
Oxigenasas/química , Oxigenasas/metabolismo , Transporte de Electrón , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica
5.
Biochemistry ; 53(22): 3585-92, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24873259

RESUMEN

Toluene/o-xylene monooxygenase (ToMO) is a bacterial multicomponent monooxygenase capable of oxidizing aromatic substrates. The carboxylate-rich diiron active site is located in the hydroxylase component of ToMO (ToMOH), buried 12 Å from the surface of the protein. A small, hydrophilic pore is the shortest pathway between the diiron active site and the protein exterior. In this study of ToMOH from Pseudomonas sp. OX1, the functions of two residues lining this pore, N202 and Q228, were investigated using site-directed mutagenesis. Steady-state characterization of WT and the three mutant enzymes demonstrates that residues N202 and Q228 are critical for turnover. Kinetic isotope effects and pH profiles reveal that these residues govern the kinetics of water egress and prevent quenching of activated oxygen intermediates formed at the diiron active site. We propose that this activity arises from movement of these residues, opening and closing the pore during catalysis, as seen in previous X-ray crystallographic studies. In addition, N202 and Q228 are important for the interactions of the reductase and regulatory components to ToMOH, suggesting that they bind competitively to the hydroxylase. The role of the pore in the hydroxylase components of other bacterial multicomponent monooxygenases within the superfamily is discussed in light of these conclusions.


Asunto(s)
Glutamina/química , Glutamina/fisiología , Oxigenasas/química , Oxigenasas/metabolismo , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Cristalografía por Rayos X , Hidroxilación , Mutagénesis Sitio-Dirigida , Oxigenasas/genética , Pseudomonas/enzimología , Pseudomonas/genética , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA