Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Apoptosis ; 29(5-6): 620-634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38281282

RESUMEN

Maleic acid (MA) induces renal tubular cell dysfunction directed to acute kidney injury (AKI). AKI is an increasing global health burden due to its association with mortality and morbidity. However, targeted therapy for AKI is lacking. Previously, we determined mitochondrial-associated proteins are MA-induced AKI affinity proteins. We hypothesized that mitochondrial dysfunction in tubular epithelial cells plays a critical role in AKI. In vivo and in vitro systems have been used to test this hypothesis. For the in vivo model, C57BL/6 mice were intraperitoneally injected with 400 mg/kg body weight MA. For the in vitro model, HK-2 human proximal tubular epithelial cells were treated with 2 mM or 5 mM MA for 24 h. AKI can be induced by administration of MA. In the mice injected with MA, the levels of blood urea nitrogen (BUN) and creatinine in the sera were significantly increased (p < 0.005). From the pathological analysis, MA-induced AKI aggravated renal tubular injuries, increased kidney injury molecule-1 (KIM-1) expression and caused renal tubular cell apoptosis. At the cellular level, mitochondrial dysfunction was found with increasing mitochondrial reactive oxygen species (ROS) (p < 0.001), uncoupled mitochondrial respiration with decreasing electron transfer system activity (p < 0.001), and decreasing ATP production (p < 0.05). Under transmission electron microscope (TEM) examination, the cristae formation of mitochondria was defective in MA-induced AKI. To unveil the potential target in mitochondria, gene expression analysis revealed a significantly lower level of ATPase6 (p < 0.001). Renal mitochondrial protein levels of ATP subunits 5A1 and 5C1 (p < 0.05) were significantly decreased, as confirmed by protein analysis. Our study demonstrated that dysfunction of mitochondria resulting from altered expression of ATP synthase in renal tubular cells is associated with MA-induced AKI. This finding provides a potential novel target to develop new strategies for better prevention and treatment of MA-induced AKI.


Asunto(s)
Lesión Renal Aguda , Apoptosis , Maleatos , Ratones Endogámicos C57BL , Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , Animales , Humanos , Masculino , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Apoptosis/efectos de los fármacos , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Especies Reactivas de Oxígeno/metabolismo
2.
Environ Res ; 248: 118308, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38281563

RESUMEN

Despite numerous data on organophosphate tri-esters (tri-OPEs) in the environment, literatures on organophosphate di-esters (di-OPEs) in field environment, especially marine sediments remain scarce. This study addresses this gap by analyzing 35 abyssal sediment samples from the middle Okinawa Trough in the East China Sea. A total of 25 tri-OPEs and 10 di-OPEs were determined, but 13 tri-OPEs and 2 di-OPEs were nondetectable in any of these sediment samples. The concentrations of ∑12tri-OPE and ∑8di-OPE were 0.108-32.2 ng/g (median 1.11 ng/g) and 0.548-15.0 ng/g (median 2.74 ng/g). Chlorinated (Cl) tri-OPEs were the dominant tri-esters, accounting for 47.5 % of total tri-OPEs on average, whereas chlorinated di-OPEs represented only 19.2 % of total di-OPEs. This discrepancy between the relatively higher percentage of Cl-tri-OPEs and lower abundance of Cl-di-OPEs may be ascribed to the stronger environmental persistence of chlorinated tri-OPEs. Source assessment suggested that di-OPEs were primarily originated from the degradation of tri-OPEs rather than industrial production. Long range waterborne transport facilitated by oceanic currents was an important input pathway for OPEs in sediments from the Okinawa Trough. These findings enhance the understanding of the sources and transport of OPEs in marine sediments, particularly in the Okinawa Trough.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Ésteres , Retardadores de Llama/análisis , China , Organofosfatos , Sedimentos Geológicos
3.
BMC Cancer ; 23(1): 1015, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864150

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant primary brain tumor. The transfer RNA-derived fragments (tRFs) are a new group of small noncoding RNAs, which are dysregulated in many cancers. Until now, the expression and function of tRFs in glioma remain unknown. METHODS: The expression profiles of tRF subtypes were analyzed using the Cancer Genome Atlas (TCGA)-low-grade gliomas (LGG)/GBM dataset. The target genes of tRFs were subjected to Gene Ontology, Kyoto Encyclopedia and Gene set enrichment analysis of Genes and Genomes pathway enrichment analysis. The protein-protein interaction enrichment analysis was performed by STRING. QRT-PCR was performed to detect the expressions of tRFs in human glioma cell lines U87, U373, U251, and human astrocyte cell line SVG p12. Western blot assay was used to detect to the expression of S100A11. The interaction between tRF-19-R118LOJX and S100A11 mRNA 3'UTR was detected by dual-luciferase reporter assay. The effects of tRF-19-R118LOJX, tRF-19-6SM83OJX and S100A11 on the glioma cell proliferation, migration and in vitro vasculogenic mimicry formation ability were examined by CCK-8 proliferation assay, EdU assay, HoloMonitor cell migration assay and tube formation assay, respectively. RESULTS: tRF-19-R118LOJX and tRF-19-6SM83OJX are the most differentially expressed tRFs between LGG and GBM groups. The functional enrichment analysis showed that the target genes of tRF-19-R118LOJX and tRF-19-6SM83OJX are enriched in regulating blood vessel development. The upregulated target genes are linked to adverse survival outcomes in glioma patients. tRF-19-R118LOJX and tRF-19-6SM83OJX were identified to suppress glioma cell proliferation, migration, and in vitro vasculogenic mimicry formation. The mechanism of tRF-19-R118LOJX might be related to its function as an RNA silencer by targeting the S100A11 mRNA 3'UTR. CONCLUSION: tRFs would become novel diagnostic biomarkers and therapeutic targets of glioma, and the mechanism might be related to its post-transcriptionally regulation of gene expression by targeting mRNA 3'UTR.


Asunto(s)
Glioma , ARN de Transferencia , Humanos , Regiones no Traducidas 3' , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Línea Celular , Diferenciación Celular , Glioma/genética
4.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1356-1367, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37555469

RESUMEN

This study was to evaluate the effects of supplementing mixed dietary fibres (MDF) and essential oils blend (EOB) either alone or in combination on growth performance and intestinal barrier function in weaned piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). Forty-two piglets (28 days old) were randomly allocated into six treatments in a 25-day experiment, and fed the basal diet (CON or ETEC) either with antibiotics (AT), MDF, EOB or MDF + EOB. On Day 22 of the experiment, pigs in CON and challenged groups (ETEC, AT, MDF, EOB and MDF + EOB) were orally administered sterile saline and ETEC containing 6 × 1010 CFU/kg body weight respectively. On Day 26, all pigs were euthanized to collect samples. Before ETEC challenge, piglets in MDF and EOB had lower diarrhoea incidence (p < 0.01) than others. After ETEC challenge, piglets in ETEC had lower average daily gain and higher diarrhoea incidence (p < 0.05) than those of CON. Furthermore, compared to CON, ETEC group increased the serum lipopolysaccharide concentration and diamine oxidase activity, and decreased mRNA levels of genes relating to barrier function (aquaporin 3, AQP3; mucin1, MUC1; zonula occludens-1, ZO-1; Occludin), and increased the concentration of cytokines (interleukin-1ß/4/6/10, IL-1ß/4/6/10) and secretory immunoglobulin A (sIgA) in jejunal mucosa (p < 0.05). However, these deleterious effects induced by ETEC were partly alleviated by MDF, EOB, MDF + EOB and AT. Additionally, compared to ETEC group, MDF increased Bifidobacterium abundance in cecal digesta and butyrate concentration in colonic digesta (p < 0.05). Also, EOB improved propionate concentration in cecal digesta, and MDF + EOB decreased IL-10 concentration in jejunal mucosa (p < 0.05) compared with ETEC. Conclusively, MDF and EOB either alone or in combination can improve growth performance and alleviate diarrhoea via improving intestinal barrier function of piglets after ETEC challenge, and all may serve as potential alternatives to AT for piglets.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Aceites Volátiles , Enfermedades de los Porcinos , Animales , Porcinos , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Aceites Volátiles/farmacología , Diarrea/veterinaria , Diarrea/microbiología , Mucosa Intestinal , Antibacterianos/farmacología , Enfermedades de los Porcinos/microbiología
5.
Arch Anim Nutr ; 77(2): 141-154, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37133420

RESUMEN

The aim of this study was to investigate the protective effects of glutathione (GSH) against oxidative stress and intestinal barrier disruption caused by diquat (an oxidative stress inducer) in weaned piglets. Twenty-four piglets were randomly assigned to four treatments with six pigs per treatment for an 18-d trial. Treatments were basal diet, basal diet + diquat challenge, 50 mg/kg GSH diets + diquat challenge and 100 mg/kg GSH diets + diquat challenge. On day 15, piglets in basal diet group and diquat-challenged groups were intraperitoneally injected with sterile saline and diquat at 10 mg/kg body weight, respectively. The results showed that GSH supplementation improved growth performance of diquat-injected piglets from days 15 to 18 (p < 0.05), especially at a dose of 100 mg/kg GSH. Meanwhile, diquat also caused oxidative stress and intestinal barrier damage in piglets. However, GSH supplementation enhanced the antioxidant capacity of serum and jejunum, as evidenced by the increase in GSH content and total superoxide dismutase activities and the decrease in 8-hydroxy-2'-deoxyguanosine concentrations (p < 0.05). GSH also up-regulated the mRNA expressions of intestinal tight junction protein (zonula occludens 1, ZO1; occludin, OCLN; claudin-1, CLDN1) and mitochondrial biogenesis and function (peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, PGC1α; mitochondrial transcription factor A, TFAM; cytochrome c, CYCS), compared with diquat-challenged piglets in basal diet (p < 0.05). Thus, the study demonstrates that GSH protects piglets from oxidative stress caused by diquat and 100 mg/kg GSH has a better protective role.


Asunto(s)
Dieta , Diquat , Animales , Porcinos , Diquat/farmacología , Dieta/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Estrés Oxidativo , Glutatión/farmacología
6.
J Anim Physiol Anim Nutr (Berl) ; 105(5): 898-907, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33715204

RESUMEN

The present study investigated the effects of Bacillus coagulans and yeast hydrolysate supplementation on growth performance, immune response and intestinal barrier function of weaned piglets. Twenty-four weaned piglets with an average body weight (BW) of 6.89 ± 0.15 kg were divided into four diets for 28 days. The treatments were basal diet (control), basal diet supplemented with antibiotic (20 mg/kg colistin sulphate and 40 mg/kg bacitracin zinc, AT), probiotics (400 mg/kg Bacillus coagulans ≥5 × 109 CFU/g, BC) or yeast hydrolysate (5000 mg/kg yeast hydrolysate, YH). Average daily gain (ADG) and average daily feed intake (ADFI) were improved by AT and YH diets (p < 0.05), while BC diet only increased ADG (p < 0.05). The complement 3 (C3), lysozyme (LZM) and tumour necrosis factor-α (TNF-α) concentrations in serum were increased in BC diet (p < 0.05). Feeding AT and YH caused the increase of jejunal villus height (p < 0.05), and a higher ratio of villus height/crypt depth was observed in AT, BC and YH groups (p < 0.05). The mRNA expression of zonula occludens-1 (ZO-1) in jejunal mucosa was up-regulated by AT, BC and YH diets (p < 0.05). Dietary AT, BC or YH inclusion decreased the interleukin-1ß (IL-1ß) concentration and TNF-α mRNA expression (p < 0.05), and YH supplementation even down-regulated toll-like receptor 4 (TLR4) and CD14 expressions (p < 0.05). In summary, the dietary administration of BC or YH both improves growth performance through promoting the intestinal barrier function, indicating both of them can serve as potential alternatives to antibiotics growth promoters for the piglet production.


Asunto(s)
Bacillus coagulans , Animales , Dieta/veterinaria , Suplementos Dietéticos , Inmunidad , Mucosa Intestinal , Saccharomyces cerevisiae , Porcinos
7.
J Cell Physiol ; 235(9): 6085-6102, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31990056

RESUMEN

Apoptosis and fibrosis play a vital role in myocardial infarction (MI) induced tissue injury. Although microRNAs have been the focus of many studies on cardiac apoptosis and fibrosis in MI, the detailed effects of miR-26a is needed to further understood. The present study demonstrated that miR-26a was downregulated in ST-elevation MI (STEMI) patients and oxygen-glucose deprivation (OGD)-treated H9c2 cells. Downregulation of miR-26a was closely correlated with the increased expression of creatine kinase, creatine kinase-MB and troponin I in STEMI patients. Further analysis identified that ataxia-telangiectasia mutated (ATM) was a target gene for miR-26a based on a bioinformatics analysis. miR-26a overexpression effectively reduced ATM expression, apoptosis, and apoptosis-related proteins in OGD-treated H9c2 cells. In a mouse model of MI, the expression of miR-26a was significantly decreased in the infarct zone of the heart, whereas apoptosis and ATM expression were increased. miR-26a overexpression effectively reduced ATM expression and cardiac apoptosis at Day 1 after MI. Furthermore, we demonstrated that overexpression of miR-26a improved cardiac function and reduced cardiac fibrosis by the reduced expression of collagen type I and connective tissue growth factor (CTGF) in mice at Day 14 after MI. Overexpression of miR-26a or ATM knockdown decreased collagen I and CTGF expression in cultured OGD-treated cardiomyocytes. Taken together, these data demonstrate a prominent role for miR-26a in linking ATM expression to ischemia-induced apoptosis and fibrosis, key features of MI progression. miR-26a reduced MI development by affecting ATM expression and could be targeted in the treatment of MI.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , MicroARNs/genética , Infarto del Miocardio/genética , Miocardio/metabolismo , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/patología , Glucosa/metabolismo , Humanos , Ratones , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxígeno/metabolismo , Ratas
8.
Part Fibre Toxicol ; 15(1): 4, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29329563

RESUMEN

BACKGROUND: Epidemiological studies have shown that ambient air pollution is closely associated with increased respiratory inflammation and decreased lung function. Particulate matters (PMs) are major components of air pollution that damages lung cells. However, the mechanisms remain to be elucidated. This study examines the effects of PMs on intercellular adhesion molecule-1 (ICAM-1) expression and the related mechanisms in vitro and in vivo. RESULT: The cytotoxicity, reactive oxygen species (ROS) generation, and monocyte adherence to A549 cells were more severely affected by treatment with O-PMs (organic solvent-extractable fraction of SRM1649b) than with W-PMs (water-soluble fraction of SRM1649b). We observed a significant increase in ICAM-1 expression by O-PMs, but not W-PMs. O-PMs also induced the phosphorylation of AKT, p65, and STAT3. Pretreating A549 cells with N-acetyl cysteine (NAC), an antioxidant, attenuated O-PMs-induced ROS generation, the phosphorylation of the mentioned kinases, and the expression of ICAM-1. Furthermore, an AKT inhibitor (LY294002), NF-κB inhibitor (BAY11-7082), and STAT3 inhibitor (Stattic) significantly down-regulated O-PMs-induced ICAM-1 expression as well as the adhesion of U937 cells to epithelial cells. Interleukin-6 (IL-6) was the most significantly changed cytokine in O-PMs-treated A549 cells according to the analysis of the cytokine antibody array. The IL-6 receptor inhibitor tocilizumab (TCZ) and small interfering RNA for IL-6 significantly reduced ICAM-1 secretion and expression as well as the reduction of the AKT, p65, and STAT3 phosphorylation in O-PMs-treated A549 cells. In addition, the intratracheal instillation of PMs significantly increased the levels of the ICAM-1 and IL-6 in lung tissues and plasma in WT mice, but not in IL-6 knockout mice. Pre-administration of NAC attenuated those PMs-induced adverse effects in WT mice. Furthermore, patients with chronic obstructive pulmonary disease (COPD) had higher plasma levels of ICAM-1 and IL-6 compared to healthy subjects. CONCLUSION: These results suggest that PMs increase ICAM-1 expression in pulmonary epithelial cells in vitro and in vivo through the IL-6/AKT/STAT3/NF-κB signaling pathway.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Molécula 1 de Adhesión Intercelular/genética , Pulmón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Enfermedad Pulmonar Obstructiva Crónica/sangre , Transducción de Señal , Células A549 , Contaminantes Atmosféricos/química , Animales , Supervivencia Celular/efectos de los fármacos , Humanos , Exposición por Inhalación , Molécula 1 de Adhesión Intercelular/sangre , Interleucina-6/sangre , Interleucina-6/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Estrés Oxidativo/genética , Material Particulado/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Solubilidad
9.
Int Wound J ; 15(4): 605-617, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29659146

RESUMEN

Curcumin, a constituent of the turmeric plant, has antitumor, anti-inflammatory, and antioxidative effects, but its effects on wound healing are unclear. We created back wounds in 72 mice and treated them with or without topical curcumin (0.2 mg/mL) in Pluronic F127 gel (20%) daily for 3, 5, 7, 9, and 12 days. Healing in wounds was evaluated from gross appearance, microscopically by haematoxylin and eosin staining, by immunohistochemistry for tumour necrosis factor alpha and alpha smooth muscle actin, and by polymerase chain reaction amplification of mRNA expression levels. Treatment caused fast wound closure with well-formed granulation tissue dominated by collagen deposition and regenerating epithelium. Curcumin increased the levels of tumour necrosis factor alpha mRNA and protein in the early phase of healing, which then decreased significantly. However, these levels remained high in controls. Levels of collagen were significantly higher in curcumin-treated wounds. Immunohistochemical staining for alpha smooth muscle actin was increased in curcumin-treated mice on days 7 and 12. Curcumin treatment significantly suppressed matrix metallopeptidase-9 and stimulated alpha smooth muscle levels in tumour necrosis factor alpha-treated fibroblasts via nuclear factor kappa B signalling. Thus, topical curcumin accelerated wound healing in mice by regulating the levels of various cytokines.


Asunto(s)
Actinas/uso terapéutico , Colágeno/uso terapéutico , Curcumina/uso terapéutico , Fibroblastos/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/uso terapéutico , Factor de Necrosis Tumoral alfa/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Cicatrización de Heridas/fisiología
10.
Arch Toxicol ; 90(11): 2779-2792, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26659566

RESUMEN

Uremic toxins are considered a risk factor for cardiovascular disorders in kidney diseases, but it is not known whether, under inflammatory conditions, they affect adhesion molecule expression on endothelial cells, which may play a critical role in acute kidney injury (AKI). In the present study, in cardiovascular surgery-related AKI patients, who are known to have high plasma levels of the uremic toxin indoxyl sulfate (IS), plasma levels of IL-1ß were found to be positively correlated with plasma levels of the adhesion molecule E-selectin. In addition, high E-selectin and IL-1ß expression were seen in the kidney of ischemia/reperfusion mice in vivo. We also examined the effects of IS on E-selectin expression by IL-1ß-treated human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. IS pretreatment of HUVECs significantly increased IL-1ß-induced E-selectin expression, monocyte adhesion, and the phosphorylation of mitogen-activated protein kinases (ERK, p38, and JNK) and transcription factors (NF-κB and AP-1), and phosphorylation was decreased by pretreatment with inhibitors of ERK1/2 (PD98059), p38 MAPK (SB202190), and JNK (SP600125). Furthermore, IS increased IL-1ß-induced reactive oxygen species (ROS) production and this effect was inhibited by pretreatment with N-acetylcysteine (a ROS scavenger) or apocynin (a NADPH oxidase inhibitor). Gel shift assays and ChIP-PCR demonstrated that IS enhanced E-selectin expression in IL-1-treated HUVECs by increasing NF-κB and AP-1 DNA-binding activities. Moreover, IS-enhanced E-selectin expression in IL-1ß-treated HUVECs was inhibited by Bay11-7082, a NF-κB inhibitor. Thus, IS may play an important role in the development of cardiovascular disorders in kidney diseases during inflammation by increasing endothelial expression of E-selectin.


Asunto(s)
Selectina E/metabolismo , Endotelio Vascular/efectos de los fármacos , Indicán/toxicidad , Interleucina-1beta/agonistas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Venenos/toxicidad , Regulación hacia Arriba/efectos de los fármacos , Lesión Renal Aguda/sangre , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Anciano , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Selectina E/química , Selectina E/genética , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Indicán/sangre , Interleucina-1beta/metabolismo , Riñón/irrigación sanguínea , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Venenos/sangre , Daño por Reperfusión/sangre , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Uremia/etiología
11.
Toxicol Appl Pharmacol ; 279(2): 240-51, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24967690

RESUMEN

Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/efectos de los fármacos , Flavonas/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Antioxidantes/farmacología , Línea Celular , Ciclooxigenasa 2/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Fibroblastos/metabolismo , Genes Reporteros , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Regiones Promotoras Genéticas , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piel/enzimología , Factores de Tiempo , Transfección
12.
Mediators Inflamm ; 2014: 726068, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25328285

RESUMEN

Accumulating evidence indicates that the regimen to increase adiponectin will provide a novel therapeutic strategy for inflammation and cardiovascular disorders. Here, we tested the effect of troglitazone (TG) and its newly synthesized derivative, 5-[4-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-yl-methoxy)-benzylidene]-2,4-thiazolidinedione (Δ2troglitazone, (Δ2TG)), on the adiponectin expression in monocytes/macrophages and the relative mechanisms. The expression of adiponectin was located in macrophages of atherosclerotic lesions from patients and cholesterol-fed rabbits. TG and Δ2TG enhanced adiponectin mRNA and protein expression in THP-1 cells by quantitative real-time PCR, Western blot, and immunocytochemistry. TG induced adiponectin mRNA expression through a PPARγ-dependent pathway whereas Δ2TG enhanced adiponectin mRNA expression through a PPARγ-independent pathway in THP-1 cells. Both TG and Δ2TG enhanced adiponectin mRNA expression through AMP-activated protein kinase (AMPK) activation. TG and Δ2TG decreased the adhesion of THP-1 cells to TNF-α-treated HUVECs and the inhibitory effect was abolished by specific antiadiponectin antibodies. TG- and Δ2TG-induced suppression on monocyte adhesion were inhibited by a selective AMPK inhibitor compound C. Our data suggest that the inhibitory effect of TG and Δ2TG on monocyte adhesion might be at least in part through de novo adiponectin expression and activation of an AMPK-dependent pathway, which might play an important role in anti-inflammation and antiatherosclerosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/metabolismo , Cromanos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Tiazolidinedionas/farmacología , Adiponectina/genética , Animales , Aterosclerosis/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Inmunohistoquímica , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa , Troglitazona
13.
Biomol Biomed ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552230

RESUMEN

Radiation-induced lung injury (RILI) frequently occurs as a complication following radiotherapy for chest tumors like lung and breast cancers. However, the precise underlying mechanisms of RILI remain unclear. In this study, we generated RILI models in rats treated with a single dose of 20 Gy and examined lung tissues by single-cell RNA sequencing (scRNA-seq) 2 weeks post-radiation. Analysis of lung tissues revealed 18 major cell populations, indicating an increase in cell-cell communication following radiation exposure. Neutrophils, macrophages, and monocytes displayed distinct subpopulations and uncovered potential for pro-inflammatory effects. Additionally, endothelial cells exhibited a highly inflammatory profile and the potential for reactive oxygen species (ROS) production. Furthermore, smooth muscle cells (SMC) showed a high propensity for extracellular matrix (ECM) deposition. Our findings broaden the current understanding of RILI and highlight potential avenues for further investigation and clinical applications.

14.
Food Chem X ; 22: 101425, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38736979

RESUMEN

This study was designed to reveal the relationship among browning, polyphenol degradation, Maillard reaction (MR) and flavor variation in jujube fruit (JF) during air-impingement jet drying (AIJD). Five kinds of JFs were dried by AIJD at 60 °C and vacuum freeze drying. Colorimeter and chemometric analysis found that AIJD induced color changes of JF pulp and peel. AIJD also reduced the total polyphenols content and total flavonoids levels in JF. The Fe3+ reducing capacity and 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulphonate) cationic radical scavenging capacity of JF were reduced by 31.6% and 8.2%, respectively. Seven polyphenols were identified in JF, and epicatechin was found related to change of JF pulp color by sparse partial least square (sPLS). sPLS revealed that 3-deoxy glucosone, N-ε-carboxymethyl-l-lysine and 5-hydroxymethylfurfural associated with JF color. sPLS found that MR generated 3-methyl-butanoic acid and cyclobutanone during AIJD of JF. Chemometrics is an effective tool to disclose mechanism of color changes in food.

15.
Angiogenesis ; 16(3): 609-24, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23408148

RESUMEN

Renal ischemia rapidly mobilizes endothelial progenitor cells (EPCs), which provides renoprotection in acute kidney injury (AKI). Indoxyl sulfate (IS) is a protein-binding uremic toxin with a potential role in endothelial injury. In this study, we examined the effects and mechanisms of action of IS on EPCs in AKI. Forty-one consecutive patients (26 male; age, 70.1 ± 14.1 years) diagnosed with AKI according to the AKIN criteria were enrolled. The AKI patients had higher serum IS levels than patients with normal kidney function (1.35 ± 0.94 × 10(-4)M vs. 0.02 ± 0.02 × 10(-4)M, P < 0.01). IS levels were negatively correlated to the number of double-labeled (CD34(+)KDR(+)) circulating EPCs (P < 0.001). After IS stimulation, the cells displayed decreased expression of phosphorylated endothelial nitric oxide (NO) synthase, vascular cell adhesion molecule-1, increased reactive oxygen species, decreased proliferative capacity, increased senescence and autophagy, as well as decreased migration and angiogenesis. These effects of IS on EPCs were reversed by atorvastatin. Further, exogenous administration of IS significantly reduced EPC number in Tie2-GFP transgenic mice and attenuated NO signaling in aortic and kidney arteriolar endothelium after kidney ischemia-reperfusion injury in mice, and these effects were restored by atorvastatin. Our results are the first to demonstrate that circulating IS is elevated in AKI and has direct effects on EPCs via NO-dependent mechanisms both in vitro and in vivo. Targeting the IS-mediated pathways by NO-releasing statins such as atorvastatin may preempt disordered vascular wall pathology, and represent a novel EPC-rescued approach to impaired neovascularization after AKI.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ácidos Heptanoicos/farmacología , Indicán/toxicidad , Pirroles/farmacología , Células Madre/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/fisiología , Atorvastatina , Western Blotting , Centrifugación por Gradiente de Densidad , Células Endoteliales/fisiología , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Indicán/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Madre/fisiología , Taiwán , Molécula 1 de Adhesión Celular Vascular/metabolismo
16.
BMC Complement Altern Med ; 13: 348, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24325567

RESUMEN

BACKGROUND: Many natural products used in preventive medicine have also been developed as cosmeceutical ingredients in skin care products, such as Scutellaria baicalensis and Gardenia jasminoides. Norartocarpetin is one of the antioxidant and antityrosinase activity compound in Artocarpus communis; however, the cytotoxicity, skin irritation and antimelanogenesis mechanisms of norartocarpetin have not been investigated yet. METHODS: In the present study, cell viability in vitro and skin irritation in vivo are used to determine the safety of norartocarpetin. The melanogenesis inhibition of norartocarpetin was determined by cellular melanin content and tyrosinase in B16F10 melanoma cell. Moreover, we examined the related-melanogenesis protein by western blot analysis for elucidating the antimelanogenesis mechanism of norartocarpin. RESULTS: The result of the present study demonstrated that norartocarpetin not only present non-cytotoxic in B16F10 and human fibroblast cells but also non-skin irritation in mice. Moreover, our result also first found that norartocarpetin downregulated phospho-cAMP response element-binding (phospho-CREB) and microphthalmia-associated transcription factor (MITF) expression, which in turn decreased both synthesis of tyrosinases (TRP-1 and TRP-2) and cellular melanin content. This process is dependent on norartocarpetin phosphorylation by mitogen-activated protein kinases such as phospho-JNK and phospho-p38, and it results in decreased melanogenesis. CONCLUSION: The present study suggests that norartocarpetin could be used as a whitening agent in medicine and/or cosmetic industry and need further clinical study.


Asunto(s)
Artocarpus/química , Supervivencia Celular/efectos de los fármacos , Flavonas/farmacología , Monofenol Monooxigenasa/efectos de los fármacos , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Animales , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Flavonas/química , Humanos , Masculino , Medicina Tradicional , Melaninas/análisis , Melaninas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/química , Pruebas de Irritación de la Piel
17.
J Anim Sci Biotechnol ; 14(1): 44, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932457

RESUMEN

BACKGROUND: Intestinal inflammation is the main risk factor causing intestinal barrier dysfunction and lipopolysaccharide (LPS) can trigger inflammatory responses in various eukaryotic species. Yeast hydrolysate (YH) possesses multi-biological effects and is received remarkable attention as a functional ingredient for improving growth performance and promoting health in animals. However, there is still inconclusive on the protective effects of dietary YH supplementation on intestinal barrier of piglets. This study was conducted to investigate the attenuate effects of YH supplementation on inflammatory responses and intestinal barrier injury in piglets challenged with LPS. METHODS: Twenty-four piglets (with an average body weight of 7.42 ± 0.34 kg) weaned at 21 days of age were randomly assigned to one of two dietary treatments (12 replications with one pig per pen): a basal diet or a basal diet containing YH (5 g/kg). On the 22nd d, 6 piglets in each treatment were intraperitoneally injected with LPS at 150 µg/kg BW, and the others were injected with the same amount of sterile normal saline. Four hours later, blood samples of each piglet were collected and then piglets were euthanized. RESULTS: Dietary YH supplementation increased average daily feed intake and average daily gain (P < 0.01), decreased the ratio of feed intake to gain of piglets (P = 0.048). Lipopolysaccharide (LPS) injection induced systemic inflammatory response, evidenced by the increase of serum concentrations of haptoglobin (HP), adrenocorticotropic hormone (ACTH), cortisol, and interleukin-1ß (IL-1ß). Furthermore, LPS challenge resulted in inflammatory intestinal damage, by up-regulation of the protein or mRNA abundances of tumor necrosis factor-α (TNF-α), IL-1ß, toll-like receptors 4 (TLR4) and phosphor-nuclear factor-κB-p65 (p-NFκB-p65) (P < 0.01), and down-regulation of the jejunal villus height, the protein and mRNA abundances of zonula occludens-1 (ZO-1) and occludin (OCC; P < 0.05) in jejunal mucosa. Dietary YH supplementation decreased the impaired effects of ACTH, cortisol, HP, IL-1ß and diamine oxidase in serum (P < 0.05). Moreover, YH supplementation also up-regulated the jejunal villus height, protein and mRNA abundances of ZO-1 and OCC (P < 0.05), down-regulated the mRNA expressions of TNF-α and IL-1ß and the protein abundances of TNF-α, IL-1ß, TLR4 and p-NFκB-p65 in jejunal mucosa in LPS-challenged pigs (P < 0.01). CONCLUSION: Yeast hydrolysate could attenuate inflammatory response and intestinal barrier injury in weaned piglets challenged with LPS, which was associated with the inhibition of TLR4/NF-κB signaling pathway activation.

18.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930062

RESUMEN

Two experiments were carried out to evaluate the effects of betaine (BET) supplementation in diets with reduced net energy (NE) levels on growth performance, nutrient digestibility, and serum metabolomic profiles in growing pigs. In experiment 1, 24 growing pigs (initial body weight, BW, 30.83 ±â€…2.50 kg) were allotted to one of the four treatments (six replications with 1 pig per pen) in a 2 × 2 factorial arrangement, including two dietary NE levels (2475 [N-NE] or 2395 [R80-NE] kcal/kg) and two BET doses (0 or 1500 mg/kg). In experiment 2, 72 growing pigs were used in a 2 × 3 factorial arrangement, including three dietary NE levels (2475 [N-NE], 2415 [R60-NE], or 2355 [R120-NE] kcal/kg) and two BET doses (0 or 1500 mg/kg). Pigs with initial BW of 31.44 ±â€…1.65 kg were divided to one of the six treatments (six replications with 2 pigs per pen). In experiment 1, lowing NE concentrations increased average daily feed intake (ADFI) by 10.69% in pigs fed the diet without BET (P > 0.05). BET significantly increased ADFI in N-NE diet (P < 0.05) but had no influence on ADFI in R80-NE diet (P > 0.05). BET enhanced the apparent digestibility of crude protein (CP), dry matter (DM), organic matter (OM), gross energy (GE), and ether extract (EE) in R80-NE diet (P < 0.05). In experiment 2, lowing NE concentrations enhanced ADFI (P > 0.05) and decreased average daily gain (ADG; P < 0.05). The reduction in feed intake by BET was further enhanced as NE concentrations decreased from 2415 to 2355 kcal/kg (P < 0.10). BET reversed the elevation of serum triglyceride, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase levels caused by R120-NE diet (P < 0.05). The concentrations of cholecystokinin and glucagon-like peptide 1 were increased by BET in pigs fed the R120-NE diet (P < 0.05). Serum metabolomics reveals that lowing dietary NE concentrations affected mainly amino acid biosynthetic pathways (P < 0.05). BET supplementation in R120-NE diet up-regulated serum BET levels and down-regulated homocysteine, DL-carnitine, and four amino acid secondary metabolites (P < 0.05). In conclusion, lowing dietary NE contents reduced the growth performance and caused metabolic abnormalities in growing pigs. However, BET decreased feed intake to a certain extent and improved the metabolic health of pigs fed the low-NE diets, which may be related to the dual regulation of amino acid metabolism and the secretion of appetite related hormones by BET.


Energy is an important factor in affecting the production efficiency and feed cost in animal husbandry. For pigs, the reduction of dietary energy will lead to a decreased growth performance. Therefore, additional researches towards ameliorating the negative effects caused by low energy diets are necessary to conduct, so as to develop appropriate nutritional strategies. Betaine, a trimethyl derivative of glycine, is considered to affect energy partitioning. Betaine may influence the growth performance and healthy status of pigs under low-energy conditions. Herein, two experiments were carried out to evaluate the effects of betaine supplementation in diets with reduced net energy levels on growth performance, nutrient digestibility, and serum metabolomic profiles in growing pigs. Results indicated that lowering dietary energy reduced growth performance and caused metabolic abnormalities in growing pigs, however, betaine supplementation in low-energy diets improved metabolic homeostasis and the utilization of energy despite reduced feed intake to a certain extent.


Asunto(s)
Betaína , Suplementos Dietéticos , Porcinos , Animales , Betaína/farmacología , Dieta/veterinaria , Aminoácidos/metabolismo , Nutrientes , Alimentación Animal/análisis , Digestión , Fenómenos Fisiológicos Nutricionales de los Animales
19.
J Cell Physiol ; 227(8): 3063-71, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22021110

RESUMEN

Ganoderma lucidum is used in traditional Chinese medicine to prevent or treat a variety of diseases, including cardiovascular disorders. We previously demonstrated that a glucan-containing extract of Reishi polysaccharides (EORP) has the potent anti-inflammatory action of reducing ICAM-1 expression in lipopolysaccharide (LPS)-treated human aortic smooth muscle cells (HASMCs) and LPS-treated mice. In the present study, we examined whether EORP inhibited platelet-derived growth factor-BB (PDGF)-stimulated HASMC proliferation and the mechanism involved. EORP dose-dependently reduced cell numbers and DNA synthesis of PDGF-treated HASMCs in vitro. EORP also arrested cell cycle progression in the G0/G1 phase, and this was associated with decreased expression of cyclin D1, cyclin E, CDK2, CDK4, and p21(Cip1) and upregulation of the cyclin-dependent kinase inhibitor p27(Kip1). The anti-proliferative effect of EORP was partly mediated by downregulation of PDGF-induced JNK phosphorylation. In in vivo studies, the femoral artery of C57BL/6 mice was endothelial-denuded and the mice were fed a diet containing 100 mg/kg/day of EORP. On day 14, both cell proliferation (proliferating cell nuclear antigen-positive cells) in the neointima and the neointima/media area ratio (0.67 ± 0.03 vs. 1.46 ± 0.30) were significantly reduced. Our data show that EORP interferes with the mitogenic activation of JNK, preventing entry of HASMCs into the cell cycle in vitro and reducing cell proliferation in the neointima and decreasing the neointimal area in vivo. Thus, EORP may represent a safe and effective novel approach to the prevention and treatment of vascular proliferative diseases.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Miocitos del Músculo Liso , Neointima , Polisacáridos/farmacología , Reishi , Animales , Aorta/citología , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Técnicas de Silenciamiento del Gen , Humanos , Lipopolisacáridos/farmacología , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Fosforilación/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología
20.
Artículo en Inglés | MEDLINE | ID: mdl-23304221

RESUMEN

Overexpression of tyrosinase can cause excessive production of melanin and lead to hyperpigmentation disorders, including melasma and freckles. Recently, agents obtained from plants are being used as alternative medicines to downregulate tyrosinase synthesis and decrease melanin production. Phyla nodiflora Greene (Verbenaceae) is used as a folk medicine in Taiwanese for treating and preventing inflammatory diseases such as hepatitis and dermatitis. However, the antimelanogenesis activity and molecular biological mechanism underlying the activity of the methanolic extract of P. nodiflora (PNM) have not been investigated to date. Our results showed that PNM treatment was not cytotoxic and significantly reduced the cellular melanin content and tyrosinase activity in a dose-dependent manner (P < 0.05). Further, PNM exhibited a significant antimelanogenesis effect (P < 0.05) by reducing the levels of phospho-cAMP response element-binding protein and microphthalmia-associated transcription factor (MITF), inhibiting the synthesis of tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2, and decreasing the cellular melanin content. Moreover, PNM significantly activated the phosphorylation of mitogen-activated protein kinases, including phospho-extracellular signal-regulated kinase, c-Jun N-terminal kinase, and phospho-p38, and inhibited the synthesis of MITF, thus decreasing melanogenesis. These properties suggest that PNM could be used as a clinical and cosmetic skin-whitening agent to cure and/or prevent hyperpigmentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA