Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(4): 6252-6261, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823886

RESUMEN

Phase (composition) is known to play a key role in determining the electronic and optical properties of amorphous oxide semiconductors. In this work, modulating the ultrafast nonlinear optical (NLO) response of SnO2 and SnO thin films by tuning oxygen partial pressure during film sputtering is explored. Femtosecond Z-scan results demonstrate that intermediate phases have no profound impact on the two-photon absorption (TPA) response of SnO2 and SnO films. Interestingly, the magnitude of the effective nonlinear absorption coefficient (ßeff) of both intermediate SnO2-x and SnOx are enhanced after the change of Sn2+/Sn4+ composition ratio, as measured by picosecond Z-scan technique. Femtosecond degenerate pump-probe measurements show that intermediate phases accelerate the carrier trapping and improve the defect-related carrier absorption in SnOx (SnO-rich) film, while intermediate phase suppress the TPA response of SnO2-x (SnO2-rich) films, therefore carrier-induced absorption dominates the NLO behavior of SnO2-x film on picosecond regime. Our results indicate a simple and effective way to modulate the NLO response of transparent conductive oxide SnO2 and SnO.

2.
Opt Lett ; 44(12): 2970-2973, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199358

RESUMEN

Nanowire-based hyperbolic metamaterials (HMMs) with rich optical dispersion engineering capabilities are promising for use in miniaturization devices, such as nanophotonic chips and circuits. Herein, based on a one-step and template-free sputtering method, we are capable of precisely tuning the microstructural parameters of Ag nanowires (with a diameter <10 nm) in silica matrix, offering plenty of opportunities to perform hyperbolic dispersion engineering. Thus, the effective plasma frequency of the designed HMMs was shifted into the near-ultraviolet region (∼350 nm), leading to a broadband hyperbolic dispersion feature covering the whole visible-light region. This demonstration could pave the way for the development of metamaterial-based flat lenses, deep-subwavelength waveguiding, and broadband perfect absorbers and sensing, etc.

3.
Inorg Chem ; 58(3): 2089-2098, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30644308

RESUMEN

The nanocrystal-in-glass (nanocrystals embedded amorphous matrix) tungsten oxide (WO3) thin films with a nanoporous characteristic were prepared via an electron beam evaporation technique. The e-beam evaporated WO3 thin films present a fast colored/bleached time of 16/11, 16/14, and 12/12 s, a large optical modulation of 92, 91, and 87% at 633 nm, and a high coloration efficiency of 61.78, 62.04, and 67.59 cm2 C-1 in Li+, Na+, and Al3+ electrolytes, respectively. On one hand, the improved electrochromic performance is mainly attributed to the short diffusion distance and buffering effect in the host matrix, which facilitates the ion insertion/extraction and alleviates the structural collapse of the framework. On the other, owing to the strong electrostatic interactions between the trivalent cations and the host, the WO3 thin films in Al3+ possess a shallow diffusion depth and long cycle life. The individual contribution from the capacitance- or diffusion-controlled process is comprehensively demonstrated. Pseudocapacitive behavior in the nanocrystal-in-glass WO3 thin films is in favor of fast kinetics response and sound cycling stability. Our work offers an in-depth insight of the electrochromic mechanism for nanocrystal-in-glass WO3 thin films in various electrolytes and sheds light on the fundamental principle in the electrochromic devices.

5.
Opt Lett ; 40(7): 1282-5, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25831313

RESUMEN

Polycrystalline ZnSnN(2) thin films were successfully prepared by DC magnetron sputtering at room temperature. Both the as-deposited and annealed films showed n-type conduction, with electron concentration varying between 1.6×10(18) and 2.3×10(17) cm(-3) and the maximum mobility of 3.98 cm(2) V(-1) s(-1). The basic optical parameters such as the refraction index, extinction coefficient, and absorption coefficient were precisely determined through the spectroscopic ellipsometry measurement and analysis. The optical bandgap of the ZnSnN(2)films was calculated to around 1.9 eV, with the absorption coefficient greater than 10(4) cm(-1) at wavelengths less than 845 nm. The easy-fabricated ZnSnN(2) possesses a sound absorption coefficient ranging from the ultraviolet through visible light and into the near-infrared, comparable to some typical photovoltaic materials such as GaAs, CdTe, and InP.

6.
Brain Imaging Behav ; 18(2): 387-395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38147273

RESUMEN

We aim to investigate the alterations in gray matter for subjective cognitive decline (SCD) and mild cognitive impairment (MCI) from the perspective of the human connectome. High-resolution T1-weighted images were acquired from 54 patients with SCD, 95 patients with MCI, and 65 healthy controls (HC). Morphological brain networks (MBN) were constructed using similarities in the distribution of gray matter volumes between regions. The strength of morphological connections and topographic metrics derived from the graph-theoretical analysis were compared. Furthermore, we assessed the relationship between the observed morphological abnormalities and disease severity. According to the results, we found a significantly decreased morphological connection between the somatomotor network and ventral attention network in SCD compared to HC and MCI compared to SCD. The graph-theoretic analysis illustrated disruptions in the whole network organization, where the normalized shortest path increased and the global efficiency (Eg) decreased in MCI compared to SCD. In addition, Montreal Cognitive Assessment scores of SCD patients had a significantly negative correlation with Eg. The primary limitations of the present study include the cross-sectional design, no enrolled AD patients, no assessment of amyloidosis, and the need for more comprehensive neuropsychological tests. Our findings indicate the abnormalities of morphological networks at early stages in the AD continuum, which could be interpreted as compensatory changes to retain a normal level of cognitive function. The present study could provide new insight into the mechanism of AD.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Conectoma , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Femenino , Masculino , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Anciano , Imagen por Resonancia Magnética/métodos , Conectoma/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estudios Transversales , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología
7.
ACS Appl Mater Interfaces ; 16(24): 31237-31246, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38842364

RESUMEN

There is always a doubt that introducing water during oxide growing has a positive or negative effect on the properties of oxide films and devices. Herein, a comparison experiment on the condition of keeping the same oxygen atom flux in the sputtering chamber is designed to examine the influences of H2O on In-Sn-Zn-O (ITZO) films and their transistors. In comparison to no-water films, numerous unstable hydrogen-related defects are induced on with-water films at the as-deposited state. Paradoxically, this induction triggers an ordered enhancement in the microstructure of the films during conventional annealing, characterized by a reduction in H-related and vacancy (Vo) defects as well as an increase in film packing density and the M-O network ordering. Ultimately, the no-water thin-film transistors (TFTs) exhibit nonswitching behavior, whereas 5 sccm-water TFT demonstrates excellent electrical performance with a remarkable saturation field-effect mobility (µFE) of 122.10 ± 5.00 cm2·V-1·s-1, a low threshold (Vth) of -2.30 ± 0.40 V, a steep sub-threshold swing (SS) of 0.18 V·dec-1, a high output current (Ion) of 1420 µA, and a small threshold voltage shift ΔVth of -0.77 V in the negative bias stability test (3600 s).

8.
Sleep Med ; 114: 109-118, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181582

RESUMEN

BACKGROUND: The pathophysiology of coronasomnia remains unclear. This study aimed to investigate changes in white matter (WM) microstructure and inflammatory factors in patients with sleep disorders (SD) characterized by poor sleep quantity, quality, or timing following coronavirus disease 2019 (COVID-19) infection in the acute phase (within one month) and whether these changes could be recovered at 3-month follow-up. METHODS: 29 acute COVID-19 patients with SD (COVID_SD) and 27 acute COVID-19 patients without SD (COVID_NonSD) underwent diffusion tensor imaging (DTI), tested peripheral blood inflammatory cytokines level, and measured Pittsburgh Sleep Quality Index (PSQI), and matched 30 uninfected healthy controls. Analyzed WM abnormalities between groups in acute phase and explored its changes in COVID_SD at 3-month follow-up by using tract-based spatial statistics (TBSS). Correlations between DTI and clinical data were examined using Spearman partial correlation analysis. RESULTS: Both COVID_SD and COVID_NonSD exhibited widespread WM microstructure abnormalities. The COVID_SD group showed specific WM microstructure changes in right inferior fronto-occipital fasciculus (IFOF) (lower fractional anisotropy [FA]/axial diffusivity [AD] and higher radial diffusivity [RD]) and left corticospinal tract (CST) (higher FA and lower RD) and higher interleukin-1ß (IL-1ß) compared with COVID_NonSD group. These WM abnormalities and IL-1ß levels were correlated PSQI score. After 3 months, the IFOF integrity and IL-1ß levels tended to return to normal accompanied by symptom improvement in the COVID_SD relative to baseline. CONCLUSION: Abnormalities in right IFOF and left CST and elevated IL-1ß levels were important neurophenotypes correlated with COVID_SD, which might provide new insights into the pathogenesis of neuroinflammation in SD patients induced by COVID-19.


Asunto(s)
COVID-19 , Trastornos del Inicio y del Mantenimiento del Sueño , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen de Difusión Tensora/métodos , Fibras Nerviosas , Encéfalo/diagnóstico por imagen , Encéfalo/patología
9.
Neural Regen Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934390

RESUMEN

ABSTRACT: Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections. Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019 (COVID-19). However, neuroimaging studies on sleep disturbances caused by COVID-19 are scarce, and existing studies have primarily focused on the long-term effects of the virus, with minimal acute phase data. As a result, little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19. To address this issue, we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection, and verified the results using 3-month follow-up data. A total of 26 COVID-19 patients with sleep disturbances (aged 51.5 ± 13.57 years, 8 women and 18 men), 27 COVID-19 patients without sleep disturbances (aged 47.33 ± 15.98 years, 9 women and 18 men), and 31 age-and gender-matched healthy controls (aged 49.19 ± 17.51 years, 9 women and 22 men) were included in this study. Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis. We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes. The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores. Additionally, we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls. The 3-month follow-up data revealed indices of altered cerebral structure (cortical thickness, cortical grey matter volume, and cortical surface area) in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances.Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection. These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.

10.
Brain Imaging Behav ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087149

RESUMEN

Moxibustion has a definite clinical effect in improving the cognitive condition in individuals with mild cognitive impairment (MCI), but its underlying neural mechanism remains elusive. This study aimed to investigate the alterations in spontaneous brain activity and cognitive function following moxibustion therapy in MCI patients. This study enrolled a cohort of 33 MCI subjects and 30 matched healthy controls (HCs). MCI subjects underwent a two-month regimen of moxibustion. Employing resting-state functional magnetic resonance imaging, we utilized regional homogeneity (ReHo) analysis to evaluate the changes in brain activity. Cognitive function was evaluated by using the Mini-Mental State Examination and Montreal Cognitive Assessment. There existed aberrant ReHo values in different brain areas mainly involved in the default mode network (DMN) in MCI subjects compared with HCs. After moxibustion treatment, MCI subjects showed an inverse in ReHo values from baseline in the hippocampus/parahippocampus and insula, as well as an increase in ReHo value in the middle frontal gyrus. Notably, the ReHo alterations in the left hippocampus/parahippocampus and middle frontal gyrus were associated with cognitive improvement in MCI patients. Abnormal neural activity occurred in MCI subjects mainly within the DMN. Moxibustion therapy may facilitate cognitive improvement in MCI subjects by modulating brain activity, particularly by reversing the neural activity within the DMN and salience network. These results underscore the therapeutic potential of moxibustion as an early intervention strategy for Alzheimer's disease.

11.
Front Neurosci ; 17: 1131247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816121

RESUMEN

Purpose: Glaucoma is the main blindness-causing disease in the world. Previous neuroimaging studies demonstrated that glaucoma not only causes the loss of optic ganglion cells but also leads to the abnormal function of the optic nerve pathway and the visual cortex. However, previous studies also reported that patients with glaucoma have dysfunction in the visual cortex in a static state. Whether or not patients with primary angle-closure glaucoma (PACG) were accompanied by dynamic functional connectivity (FC) changes in the primary visual cortex (V1) remains unknown. Methods: A total of 34 patients with PACG (23 men and 11 women) and 34 well-matched healthy controls (HCs) were enrolled in the study. The dynamic functional connectivity (dFC) with the sliding window method was applied to investigate the dynamic functional connectivity changes in the V1. Results: Compared with HCs, patients with PACG showed increased dFC values between left V1 and bilateral calcarine (CAL). Meanwhile, patients with PACG showed increased dFC values between right V1 and bilateral CAL. Conclusion: Our study demonstrated that patients with PACG showed increased dFC within the visual network, which might indicate the increased variability FC in the V1 in patients with PACG.

12.
Micromachines (Basel) ; 14(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37420978

RESUMEN

Suspended graphene film is of great significance for building high-performance electrical devices. However, fabricating large-area suspended graphene film with good mechanical properties is still a challenge, especially for the chemical vapor deposition (CVD)-grown graphene films. In this work, the mechanical properties of suspended CVD-grown graphene film are investigated systematically for the first time. It is found that monolayer graphene film is hard to maintain on circular holes with a diameter of tens of micrometers, which can be improved greatly by increasing the layer of graphene films. The mechanical properties of CVD-grown multilayer graphene films suspended on a circular hole with a diameter of 70 µm can be increased by 20%, and multilayer graphene films prepared by layer-layer stacking process can be increased by up to 400% for the same size. The corresponding mechanism was also discussed in detail, which might pave the way for building high-performance electrical devices based on high-strength suspended graphene film.

13.
Quant Imaging Med Surg ; 13(2): 835-851, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36819237

RESUMEN

Background: Premenstrual syndrome (PMS) is a menstrual-related disorder, characterized by physical, emotional, behavioral and cognitive symptoms. However, the neuropathological mechanisms of PMS remain unclear. This study aimed to investigate the frequency-specific functional connectivity density (FCD) and structural covariance in PMS. Methods: Functional and T1-weighted structural data were obtained from 35 PMS patients and 36 healthy controls (HCs). This study was a cross-sectional and prospective design. The local/long-range FCD (LFCD/LRFCD) across slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) bands were computed, and two-way analysis of variance (ANOVA) was performed to ascertain the main effects of group and interaction effects between group and frequency band. Receiver operating characteristic (ROC) curve was performed to investigate reliable biomarkers for identifying PMS from HCs. Based on the ROC results, characterized the changes of whole-brain structural covariance patterns of striatum subregions in two groups. Correlation analysis was applied to examine relationships between the clinical symptoms and abnormal brain regions. Results: Compared with HCs, PMS patients exhibited: (I) aberrant functional communication in the middle cingulate cortex and precentral gyrus; (II) significant frequency band-by-group interaction effects of the striatum, thalamus and orbitofrontal cortex; (III) the better classification ability of the LFCD in the striatum in ROC analysis (slow-5); (IV) decreased gray matter volumes in the caudate subregions and decreased structural associations of between the caudate subregions and frontal cortex; (V) the LFCD value in thalamus were significantly negatively correlated with the sleep problems (slow-5). Conclusions: Based on multi-modal magnetic resonance imaging (MRI) analysis, this study might imply the aberrant emotional regulation and cognitive function related to menstrual cycle in PMS and improve our understanding of the pathophysiologic mechanism in PMS from novel perspective.

14.
Front Neurol ; 14: 1297028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107635

RESUMEN

Introduction: This study aimed to evaluate morphological changes in cortical and subcortical regions and their asymmetrical differences in individuals with subjective cognitive decline (SCD) and mild cognitive impairment (MCI). These morphological changes may provide valuable insights into the early diagnosis and treatment of Alzheimer's disease (AD). Methods: We conducted structural MRI scans on a cohort comprising 62 SCD patients, 97 MCI patients, and 70 age-, sex-, and years of education-matched healthy controls (HC). Using Freesurfer, we quantified surface area, thickness, the local gyrification index (LGI) of cortical regions, and the volume of subcortical nuclei. Asymmetry measures were also calculated. Additionally, we explored the correlation between morphological changes and clinical variables related to cognitive decline. Results: Compared to HC, patients with MCI exhibited predominantly left-sided surface morphological changes in various brain regions, including the transverse temporal gyrus, superior temporal gyrus, insula, and pars opercularis. SCD patients showed relatively minor surface morphological changes, primarily in the insula and pars triangularis. Furthermore, MCI patients demonstrated reduced volumes in the anterior-superior region of the right hypothalamus, the fimbria of the bilateral hippocampus, and the anterior region of the left thalamus. These observed morphological changes were significantly associated with clinical ratings of cognitive decline. Conclusion: The findings of this study suggest that cortical and subcortical morphometric changes may contribute to cognitive impairment in MCI, while compensatory mechanisms may be at play in SCD to preserve cognitive function. These insights have the potential to aid in the early diagnosis and treatment of AD.

15.
Adv Sci (Weinh) ; 10(14): e2300373, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36935362

RESUMEN

Amorphous oxide semiconductor thin-film transistors (AOS TFTs) are ever-increasingly utilized in displays. However, to bring high mobility and excellent stability together is a daunting challenge. Here, the carrier transport/relaxation bilayer stacked AOS TFTs are investigated to solve the mobility-stability conflict. The charge transport layer (CTL) is made of amorphous In-rich InSnZnO, which favors big average effective coordination number for all cations and more edge-shared structures for better charge transport. Praseodymium-doped InSnZnO is used as the charge relaxation layer (CRL), which substantially shortens the photoelectron lifetime as revealed by femtosecond transient absorption spectroscopy. The CTL and CRL with the thickness suitable for industrial production respectively afford minute potential barrier fluctuation for charge transport and fast relaxation for photo-generated carriers, resulting in transistors with an ultrahigh mobility (75.5 cm2 V-1 s-1 ) and small negative-bias-illumination-stress/positive-bias-temperature-stress voltage shifts (-1.64/0.76 V). The design concept provides a promising route to address the mobility-stability conflict for high-end displays.

16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1851-1854, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36083932

RESUMEN

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition characterized by social communication, language and behavior impairments. Leveraging deep learning to automatically predict ASD has attracted more and more attention in the medical and machine learning communities. However, how to select effective measure signals for deep learning prediction is still a challenging problem. In this paper, we studied two kinds of measure signals, i.e., regional homogeneity (ReHo) and Craddock 200 (CC200), which both represents homogeneous functional activity, in the framework of deep learning, and designed a new mechanism to effectively joint them for deep learning based ASD prediction. Extensive experiments on the ABIDE dataset provide empirical evidence in support of effectiveness of our method. In particular, we obtained 79% in terms of accuracy by effectively fusing these two kinds of signals, much better than any single-measure model (ReHo SM-model: ∼69% and CC200 SM-model: ∼70%). These results suggest that leveraging multi-measure signals together are effective for ASD prediction.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/diagnóstico por imagen , Comunicación , Humanos , Lenguaje , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos
17.
J Phys Chem Lett ; 13(31): 7243-7251, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35913457

RESUMEN

Crystalline Ga2O3 (c-Ga2O3) is a promising candidate for next-generation solar-blind photodetectors (SBPDs) but is suffering from high processing temperatures. Herein, seed-induced engineering is proposed via adopting Zn as an induced metal for crystallizing Ga2O3, lowering the processing temperature by 200 °C. After annealing, the Zn/Ga2O3 consists of an inner Ga2O3 layer of a monoclinic crystalline phase, top ZnO crystals coming from Zn oxidation, and a thin corundum Ga2O3 layer between them, which implies a "seed-induced" crystallization mechanism besides the nonequilibrium chaotic state caused by the traditional electron transfer one. As a result, the tailored c-Ga2O3 thin-film transistor-type SBPD with enhanced packing density and finite oxygen deficiency demonstrates a satisfactory responsivity of 8.6 A/W and also an ultrahigh UVC/visible rejection ratio (R254/R450) of 2 × 105. The seed-induced engineering forecasts its potential application in crystalline Ga2O3 SBPDs under a relatively low processing temperature.

18.
J Phys Chem Lett ; 13(39): 9072-9078, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36154177

RESUMEN

CuI is one of the promising hole transport materials for perovskite solar cells. However, its tendency to form defects is currently limiting its use for device applications. Here, we report the successful improvement of CuI through Sn doping and the direct measurement of the carrier relaxation and interfacial charge-transfer processes in Sn-doped CuI films and their heterostructures. Femtosecond-transient absorption (fs-TA) measurements reveal that Sn doping effectively passivates the trap states within the bandgap of CuI. The I-V characteristics of heterostructures demonstrate drastic improvement in transport characteristics upon Sn doping. Fs-TA measurements further confirm that the CuSnI/ZnO heterojunction has a type-II configuration with ultrafast charge transfer (<280 fs). The charge transfer time of a CuI/ZnO heterostructure is ∼2.8 times slower than that of the CuSnI/ZnO heterostructure, indicating that Sn doping suppresses the interfacial states that retard the charge transfer. These results elucidate the effect of Sn doping on the performance of CuI-based heterostructures.

19.
J Pharm Biomed Anal ; 211: 114597, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35074564

RESUMEN

In this study, separative extended-gate AlGaAs/GaAs high electron mobility transistor (HEMT) biosensor is proposed for prostate-specific antigen (PSA) detection. Zinc oxide nanotetrapods (T-ZnO) with a four-leg structure is introduced onto the sensing pad to form a three-dimensional (3D) and concave detection front. Compared with common plane front, the elaborately-designed-3D and concave detection front can offer more biological modification sites and decrease the Debye volume, resultantly improving both the detection scope and sensitivity. Anti-PSA probes can be fixed at any sites of T-ZnO via a chemical bio-functionalization method, which facilitates better detection performance by comparison with a physical modification scheme. On the other hand, the T-ZnO nanostructures with the four-leg configuration are capable of releasing the stress and erosion effect of the solution on the plane Au film, contributing to a great improvement in the reliability of the biosensors. The optimized biosensors with chemical bio-functionalized T-ZnO detection front demonstrate good linear current/voltage response to label-free PSA target in the concentration range from 5 fg/ml~5 ng/ml and a sensitivity variation ~ 1.3% dec-1.


Asunto(s)
Técnicas Biosensibles , Antígeno Prostático Específico , Técnicas Biosensibles/métodos , Humanos , Masculino , Antígeno Prostático Específico/análisis , Reproducibilidad de los Resultados , Óxido de Zinc/química
20.
Front Mol Neurosci ; 15: 852882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620445

RESUMEN

Background: Mild Cognitive Impairment (MCI), as a high risk of Alzheimer's disease (AD), represents a state of cognitive function between normal aging and dementia. Moxibustion may effectively delay the progression of AD, while there is a lack of studies on the treatments in MCI. This study aimed to evaluate the effect of moxibustion treatment revealed by the amplitude of low-frequency fluctuation (ALFF) in MCI. Method: We enrolled 30 MCI patients and 30 matched healthy controls (HCs) in this study. We used ALFF to compare the difference between MCI and HCs at baseline and the regulation of spontaneous neural activity in MCI patients by moxibustion. The Mini-Mental State Examination and Montreal Cognitive Assessment scores were used to evaluate cognitive function. Results: Compared with HCs, the ALFF values significantly decreased in the right temporal poles: middle temporal gyrus (TPOmid), right inferior temporal gyrus, left middle cingulate gyrus, and increased in the left hippocampus, left middle temporal gyrus, right lingual gyrus, and right middle occipital gyrus in MCI patients. After moxibustion treatment, the ALFF values notably increased in the left precuneus, left thalamus, right temporal poles: middle temporal gyrus, right middle frontal gyrus, right inferior temporal gyrus, right putamen, right hippocampus, and right fusiform gyrus, while decreased in the bilateral lingual gyrus in MCI patients. The Mini-Mental State Examination and Montreal Cognitive Assessment scores increased after moxibustion treatment, and the increase in Mini-Mental State Examination score was positively correlated with the increase of ALFF value in the right TPOmid, the right insula, and the left superior temporal gyrus. Conclusion: Moxibustion treatment might improve the cognitive function of MCI patients by modulating the brain activities within the default mode network, visual network, and subcortical network with a trend of increased ALFF values and functional asymmetry of the hippocampus. These results indicate that moxibustion holds great potential in the treatment of MCI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA