Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin Herb Med ; 12(3): 257-264, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36119014

RESUMEN

Objective: Fusarium oxysporum is a common pathogenic fungus in ginseng cultivation. Both pathogens and antagonistic fungi have been reported to induce plant resistance responses, thereby promoting the accumulation of secondary metabolites. The purpose of this experiment is to compare the advantages of one of the two fungi, in order to screen out more effective elicitors. The mechanism of fungal elicitor-induced plant resistance response is supplemented. Methods: A gradient dilution and the dural culture were carried out to screen strains. The test strain was identified by morphology and 18 s rDNA. The effect of different concentrations (0, 50, 100, 200, 400 mg/L) of Penicillium sp. YJM-2013 and F. oxysporum on fresh weight and ginsenosides accumulation were tested. Signal molecules transduction, expression of transcription factors and functional genes were investigated to study the induction mechanism of fungal elicitors. Results: Antagonistic fungi of F. oxysporum was identified as Penicillium sp. YJM-2013, which reduced root biomass. The total ginsenosides content of Panax ginseng adventitious roots reached the maximum (48.95 ± 0.97 mg/g) treated with Penicillium sp. YJM-2013 at 200 mg/L, higher than control by 2.59-fold, in which protopanoxadiol-type ginsenosides (PPD) were increased by 4.57 times. Moreover, Penicillium sp. YJM-2013 activated defense signaling molecules, up-regulated the expression of PgWRKY 1, 2, 3, 5, 7, 9 and functional genes in ginsenosides synthesis. Conclusion: Compared with the pathogenic fungi F. oxysporum, antagonistic fungi Penicillium sp. YJM-2013 was more conducive to the accumulation of ginsenosides in P. ginseng adventitious roots. Penicillium sp. YJM-2013 promoted the accumulation of ginsenosides by intensifying the generation of signal molecules, activating the expression of transcription factors and functional genes.

2.
J Agric Food Chem ; 66(36): 9446-9455, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30095259

RESUMEN

Ginsenosides attract great attention for their bioactivities. However, their contents are low, and many UDP-glycosyltransferases (UGTs) that play crucial roles in the ginsenoside biosynthesis pathways have not been identified, which hinders the biosynthesis of ginsenosides. In this study, we reported that one UDP-glycosyltransferase, UGTPg71A29, from Panax ginseng could glycosylate C20-OH of Rh1 and transfer a glucose moiety to Rd, producing ginsenosides Rg1 and Rb1, respectively. Ectopic expression of UGTPg71A29 in Saccharomyces cerevisiae stably generated Rg1 and Rb1 under its corresponding substrate. Overexpression of UGTPg71A29 in transgenic cells of P. ginseng could significantly enhance the accumulation of Rg1 and Rb1, with their contents of 3.2- and 3.5-fold higher than those in the control, respectively. Homology modeling, molecular dynamics, and mutational analysis revealed the key catalytic site, Gln283, which provided insights into the catalytic mechanism of UGTPg71A29. These results not only provide an efficient enzymatic tool for the synthesis of glycosides but also help achieve large-scale industrial production of glycosides.


Asunto(s)
Ginsenósidos/biosíntesis , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Panax/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Vías Biosintéticas , Catálisis , Dominio Catalítico , Glicosiltransferasas/genética , Simulación de Dinámica Molecular , Panax/química , Panax/genética , Proteínas de Plantas/genética , Uridina Difosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA