Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mediators Inflamm ; 2024: 8347647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39429695

RESUMEN

Inflammatory chemokines are a group of G-protein receptor ligands characterized by conserved cysteine residues, which can be divided into four main subfamilies: CC, CXC, XC, and CX3C. The C-X-C chemokine receptor (CXCR) 3 and its ligands, C-X-C chemokine ligands (CXCLs), are widely expressed in both the peripheral nervous system (PNS) and central nervous system (CNS). This comprehensive literature review aims to examine the functions and pathways of CXCR3 and its ligands in nervous system-related diseases. In summary, while the related pathways and the expression levels of CXCR3 and its ligands are varied among different cells in PNS and CNS, the MPAK pathway is the core via which CXCR3 exerts physiological functions. It is not only the core pathway of CXCR3 after activation but also participates in the expression of CXCR3 ligands in the nervous system. In addition, despite CXCR3 being a common inflammatory chemokine receptor, there is no consensus on its precise roles in various diseases. This uncertainty may be attributable to distinct inflammatory characteristics, that inflammation simultaneously possesses the dual properties of damage induction and repair facilitation.


Asunto(s)
Receptores CXCR3 , Receptores CXCR3/metabolismo , Humanos , Animales , Enfermedades del Sistema Nervioso/metabolismo , Inflamación/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Periférico/metabolismo , Ligandos , Transducción de Señal
2.
J Cell Mol Med ; 27(15): 2194-2214, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315184

RESUMEN

Suppressor of cytokine signalling (SOCS) 1/2/3/4 are involved in the occurrence and progression of multiple malignancies; however, their prognostic and developmental value in patients with glioblastoma (GBM) remains unclear. The present study used TCGA, ONCOMINE, SangerBox3.0, UALCAN, TIMER2.0, GENEMANIA, TISDB, The Human Protein Atlas (HPA) and other databases to analyse the expression profile, clinical value and prognosis of SOCS1/2/3/4 in GBM, and to explore the potential development mechanism of action of SOCS1/2/3/4 in GBM. The majority of analyses showed that SOCS1/2/3/4 transcription and translation levels in GBM tissues were significantly higher than those in normal tissues. qRT-PCR, western blotting (WB) and immunohistochemical staining were used to verify that SOCS3 was expressed at higher mRNA and protein levels in GBM than in normal tissues or cells. High SOCS1/2/3/4 mRNA expression was associated with poor prognosis in patients with GBM, especially SOCS3. SOCS1/2/3/4 were highly contraindicated, which had few mutations, and were not associated with clinical prognosis. Furthermore, SOCS1/2/3/4 were associated with the infiltration of specific immune cell types. In addition, SOCS3 may affect the prognosis of patients with GBM through JAK/STAT signalling pathway. Analysis of the GBM-specific protein interaction (PPI) network showed that SOCS1/2/3/4 were involved in multiple potential carcinogenic mechanisms of GBM. In addition, colony formation, Transwell, wound healing and western blotting assays revealed that inhibition of SOCS3 decreased the proliferation, migration and invasion of GBM cells. In conclusion, the present study elucidated the expression profile and prognostic value of SOCS1/2/3/4 in GBM, which may provide potential prognostic biomarkers and therapeutic targets for GBM, especially SOCS3.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas , Pronóstico , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , ARN Mensajero/metabolismo , Biomarcadores
3.
BMC Cancer ; 23(1): 102, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717836

RESUMEN

BACKGROUND: CD276 (also known as B7-H3) is one of the most important immune checkpoints of the CD28 and B7 superfamily, and its abnormal expression is closely associated with various types of cancer. It has been shown that CD276 is able to inhibit the function of T cells, and that this gene may potentially be a promising immunotherapy target for different types of cancer. METHODS: Since few systematic studies have been published on the role of CD276 in cancer to date, the present study has employed single-cell sequencing and bioinformatics methods to analyze the expression patterns, clinical significance, prognostic value, epigenetic alterations, DNA methylation level, tumor immune cell infiltration and immune functions of CD276 in different types of cancer. In order to analyze the potential underlying mechanism of CD276 in glioblastoma (GBM) to assess its prognostic value, the LinkedOmics database was used to explore the biological function and co-expression pattern of CD276 in GBM, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. In addition, a simple validation of the above analyses was performed using reverse transcription-quantitative (RT-q)PCR assay. RESULTS: The results revealed that CD276 was highly expressed, and was often associated with poorer survival and prognosis, in the majority of different types of cancer. In addition, CD276 expression was found to be closely associated with T cell infiltration, immune checkpoint genes and immunoregulatory interactions between lymphoid and a non-lymphoid cell. It was also shown that the CD276 expression network exerts a wide influence on the immune activation of GBM. The expression of CD276 was found to be positively correlated with neutrophil-mediated immunity, although it was negatively correlated with the level of neurotransmitters, neurotransmitter transport and the regulation of neuropeptide signaling pathways in GBM. It is noteworthy that CD276 expression was found to be significantly higher in GBM compared with normal controls according to the RT-qPCR analysis, and the co-expression network, biological function and chemotherapeutic drug sensitivity of CD276 in GBM were further explored. In conclusion, the findings of the present study have revealed that CD276 is strongly expressed and associated with poor prognosis in most types of cancer, including GBM, and its expression is strongly associated with T-cell infiltration, immune checkpoint genes, and immunomodulatory interactions between lymphocytes and non-lymphoid cells. CONCLUSIONS: Taken together, based on our systematic analysis, our findings have revealed important roles for CD276 in different types of cancers, especially GBM, and CD276 may potentially serve as a biomarker for cancer.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Pronóstico , Multiómica , Genes Reguladores , Factores de Transcripción , Antígenos B7/genética
4.
Biochem Biophys Res Commun ; 572: 125-130, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364291

RESUMEN

Acute liver injury is a short-term burst of liver cell damage, which has many causes and complex mechanisms. Despite the unique ability of the liver to heal itself, there is still no effective treatment except liver transplantation for chronic liver injury or even liver failure caused by acute liver injury. Stem cell-derived exosomes are ideal drug carriers due to their unique immunomodulatory effects and structural characteristics. In this study, quercetin and vitamin A loaded adipose mesenchymal stem cells (ASCs)-derived exosomes were constructed and used to treat acute liver injury induced by CCl4 in mice. Quercetin enhances the therapeutic efficacy of exosomes, while vitamin A enhances the liver targeting of exosomes, and it was found that quercetin and vitamin A loaded mesenchymal stem cell exosomes reduce rapid senescence-like response induced by acute liver injury.


Asunto(s)
Tejido Adiposo/citología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Células Madre Mesenquimatosas/citología , Quercetina/farmacología , Vitamina A/farmacología , Animales , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Exosomas/metabolismo , Ratones
5.
IUBMB Life ; 73(2): 398-407, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33372372

RESUMEN

Glioblastoma multiforme (GBM) is among the most common adult brain tumors with invariably fatal character. Following the limited conventional therapies, almost all patients, however, presented with symptoms at the time of recurrence. It is dire to develop novel therapeutic strategies to improve the current treatment of GBM. Gallic acid is a well-established antioxidant, presenting a promising new selective anti-cancer drug, while gold nanoparticles (GNPs) can be developed as versatile nontoxic carriers for anti-cancer drug delivery. Here, we prepared gallic acid-GNPs (GA-GNPs) by loading gallic acid onto GNPs, reduction products of tetrachloroauric acid by sodium citrate, through physical and agitation adsorption. GA-GNPs, rather than GNPs alone, significantly inhibited the survival of U251 GBM cells, as well as enhanced radiation-induced cell death. Moreover, GA-GNPs plus radiation arrested the cell cycle of U251 at the S and G2/M phases and triggered apoptotic cell death, which is supported by increased BAX protein levels and decreased expression of BCL-2. Thus, GA-GNPs have great potential in the combination with radiation therapy in future studies for GBM treatment.


Asunto(s)
Muerte Celular , Ácido Gálico/farmacología , Rayos gamma , Glioma/radioterapia , Oro/química , Nanopartículas del Metal/administración & dosificación , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Ciclo Celular , Sistemas de Liberación de Medicamentos , Ácido Gálico/química , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Nanopartículas del Metal/química , Fármacos Sensibilizantes a Radiaciones/química , Células Tumorales Cultivadas
6.
Neoplasma ; 68(6): 1147-1156, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34427100

RESUMEN

The cystine/glutamate antiporter xCT (SLC7A11) is frequently upregulated in many cancers, including glioblastoma (GBM). SLC7A11-mediated cystine taken up is reduced to cysteine, a precursor amino acid for glutathione synthesis and antioxidant cellular defense. However, little is known about the biological functions of SLC7A11 and its effect on therapeutic response in GBM. Here, we report that the expression of SLC7A11 is higher in GBM compared with normal brain tissue, but is negatively associated with tumor grades and positively impacts survival in the bioinformatic analysis of TCGA and CGGA database. Additionally, a negative association between SLC7A11 and mismatch repair (MMR) gene expression was identified by Pearson correlation analysis. In the GBM cells with glucose-limited culture conditions, overexpression of SLC7A11 significantly decreased MMR gene expression, including MLH1, MSH6, and EXO1. SLC7A11-overexpressed GBM cells demonstrated elevated double-strand break (DSB) levels and increased sensitivity to radiation treatment. Taken together, our work indicates that SLC7A11 might be a potential biomarker for predicting a better response to radiotherapy in GBM.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Reparación de la Incompatibilidad de ADN , Glioblastoma , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Línea Celular Tumoral , Expresión Génica , Glioblastoma/genética , Glioblastoma/radioterapia , Glucosa , Humanos
7.
Virus Genes ; 52(1): 99-106, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26748656

RESUMEN

The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling and host cellular responses via to its ability to interact with various cellular proteins. FKBP8 is also reported to promote virus replication. Here, we show that NS5A specifically interacts with FKBP8 through coimmunoprecipitation and GST-pulldown studies. Additionally, confocal microscopy study showed that NS5A and FKBP8 colocalized in the cytoplasm. Overexpression of FKBP8 via the eukaryotic expression plasmid pDsRED N1 significantly promoted viral RNA synthesis. The cells knockdown of FKBP8 by lentivirus-mediated shRNA markedly decreased the virus replication when infected with CSFV. These data suggest that FKBP8 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of FKBP8 protein functions may be beneficial for developing new strategies to treat CSFV infection.


Asunto(s)
Virus de la Fiebre Porcina Clásica/fisiología , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Secuencia de Bases , ADN , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Datos de Secuencia Molecular , Unión Proteica , Porcinos
8.
J Gen Virol ; 96(Pt 7): 1732-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25805409

RESUMEN

Classical swine fever is one of the most important swine diseases worldwide and has tremendous socioeconomic impact. In this study, we focused on the signalling pathways of Toll-like receptors (TLRs) because of their roles in the detection and response to viral infections. To this end, two classical swine fever virus (CSFV) strains, namely the highly virulent CSFV Shimen strain and the avirulent C strain (a vaccine strain), were employed, and the expression of 19 immune effector genes was analysed by real-time PCR, Western blot analyses, ELISA and flow cytometry analyses. In vitro experiments were conducted with porcine monocyte-derived macrophages (pMDMs). The results showed that the mRNA and protein levels of TLR2, TLR4 and TLR7 were upregulated in response to CSFV infection, but TLR3 remained unchanged, and was downregulated after infection with the C strain and the Shimen virus, respectively. Furthermore, TLR3-mediated innate immune responses were inhibited in Shimen-strain-infected pMDMs by stimulation with poly(I : C). Accordingly, comprehensive analyses were performed to detect TLR-dependent cytokine responses and the activation of TLR signalling elements. CSFV infection induced mitogen-activated protein kinase activation, but did not elicit NFκB activation, thereby affecting the production of pro-inflammatory cytokines. The Shimen strain infection resulted in a significant activation of IFN regulatory factor IRF7 and suppression of IRF3. These data provided clues for understanding the effect of CSFV infection on the TLR-mediated innate immune response and associated pathological changes.


Asunto(s)
Virus de la Fiebre Porcina Clásica/inmunología , Expresión Génica , Interacciones Huésped-Patógeno , Macrófagos/inmunología , Macrófagos/virología , Receptores Toll-Like/biosíntesis , Animales , Western Blotting , Células Cultivadas , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos
9.
J Gen Virol ; 95(Pt 12): 2693-2699, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25146005

RESUMEN

Classical swine fever virus (CSFV) has a tropism for vascular endothelial cells and immune system cells. The process and release of pro-inflammatory cytokines, including IL-1ß and IL-18, is one of the fundamental reactions of the innate immune response to viral infection. In this study, we investigated the production of IL-1ß from macrophages following CSFV infection. Our results showed that IL-1ß was upregulated after CSFV infection through activating caspase-1. Subsequent studies demonstrated that reactive oxygen species may not be involved in CSFV-mediated IL-1ß release. Recently, research has indicated a novel mechanism by which inflammasomes are triggered through detection of activity of viroporin. We further demonstrated that CSFV viroporin p7 protein induced IL-1ß secretion which could be inhibited by the ion channel blocker amantadine and also discovered that p7 protein was a short-lived protein degraded by the proteasome. Together, our observations provided an insight into the mechanism of CSFV-induced inflammatory responses.


Asunto(s)
Virus de la Fiebre Porcina Clásica/fisiología , Interleucina-1beta/metabolismo , Macrófagos/virología , Proteínas Virales/farmacología , Animales , Caspasa 1/genética , Caspasa 1/metabolismo , Células Cultivadas , Interleucina-1beta/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Porcinos , Proteínas Virales/metabolismo
10.
Vet Res ; 45: 48, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24758593

RESUMEN

Infection of domestic swine with the highly virulent Shimen strain of classical swine fever virus causes hemorrhagic lymphadenitis and diffuse hemorrhaging in infected swine. We analyzed patterns of gene expression for CSFV Shimen in swine umbilical vein endothelial cells (SUVECs). Transcription of the vascular endothelial growth factor (VEGF) C gene (VEGF-C) and translation of the corresponding protein were significantly up-regulated in SUVECs. Our findings suggest that VEGF-C is involved in mechanisms of acute infection caused by virulent strains of CSFV.


Asunto(s)
Virus de la Fiebre Porcina Clásica/fisiología , Virus de la Fiebre Porcina Clásica/patogenicidad , Peste Porcina Clásica/genética , Enfermedades de los Porcinos/genética , Factor C de Crecimiento Endotelial Vascular/genética , Animales , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/genética , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/veterinaria , Regulación Viral de la Expresión Génica , Porcinos , Enfermedades de los Porcinos/virología , Venas Umbilicales/metabolismo , Venas Umbilicales/virología , Regulación hacia Arriba , Factor C de Crecimiento Endotelial Vascular/metabolismo , Virulencia
11.
BMC Vet Res ; 10: 279, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25439655

RESUMEN

BACKGROUND: Classical swine fever virus (CSFV) infection causes significant losses of pigs, which is characterized by hemorrhage, disseminated intravascular coagulation and leucopenia. The swine vascular endothelial cell is a primary target cell for CSFV. The aim of this study was to determine the role of CSFV infection in inducing oxidative stress (OS) in vascular endothelial cells. RESULTS: We demonstrated that CSFV infection induced oxidative stress in swine umbilical vein endothelial cells (SUVECs), characterized by the induction of reactive oxygen species (ROS) production and the elevations of porcine antioxidant proteins thioredoxin (Trx), peroxiredoxin-6 (PRDX-6) and heme oxygenase-1 (HO-1) expression. Furthermore, cyclooxygenase-2 (COX-2), a pro-inflammatory protein related to oxidative stress, was up-regulated while anti-inflammatory protein peroxisome proliferator-activated receptor-γ (PPAR-γ), an important mediator in vascular functional regulation, was down-regulated in the CSFV infected cells. In addition, antioxidants showed significant inhibitory effects on the CSFV replication, indicating a close relationship between CSFV replication and OS induced in the host cells. CONCLUSIONS: Our results indicated that CSFV infection induced oxidative stress in SUVECs. These findings provide novel information on the mechanism by which CSFV can alter intracellular events associated with the viral infection.


Asunto(s)
Virus de la Fiebre Porcina Clásica/metabolismo , Endotelio Vascular/virología , Estrés Oxidativo , Venas Umbilicales , Animales , Peste Porcina Clásica/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Citometría de Flujo , Hemo-Oxigenasa 1/metabolismo , Microscopía Fluorescente , Peroxiredoxina VI/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Porcinos , Tiorredoxinas/metabolismo
12.
Cell Prolif ; 56(3): e13375, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36457281

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant and aggressive type of glioma. Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but widely exist in eukaryotic cells. The common characteristics of these RNAs are that they can all be transcribed from the genome without being translated into proteins, thus performing biological functions, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs. Studies have found that ncRNAs are associated with the occurrence and development of GBM, and there is a complex regulatory network among ncRNAs, which can regulate cell proliferation, migration, apoptosis and differentiation, thus provide a basis for the development of highly specific diagnostic tools and therapeutic strategies in the future. The present review aimed to comprehensively describe the biogenesis, general features and functions of regulatory ncRNAs in GBM, and to interpret the potential biological functions of these ncRNAs in GBM as well as their impact on clinical diagnosis, treatment and prognosis and discusses the potential mechanisms of these RNA subtypes leading to cancer in order to contribute to the better design of personalized GBM therapies in the future.


Asunto(s)
Glioblastoma , Glioma , MicroARNs , ARN Largo no Codificante , Humanos , Glioblastoma/patología , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Circular
13.
PLoS One ; 17(10): e0275826, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36227877

RESUMEN

Earthworm action and feeding have an important impact on a variety of microorganisms in the soil. However, the effects of the earthworm on Beauveria bassiana, a common entomopathogenic fungus in the biological control of pests, have been little studied. In this study, the epigeic earthworm species Eisenia fetida (Savigny) was selected to evaluate its impact on B. bassiana TST05 including its distribution in soil and its pathogenicity to target insects. By testing B. bassiana TST05 distribution, biomass in soil, viable spore germination rate, and pathogenicity to insect larvae after passing through the earthworm gut, the results showed that the activity and feeding of E. fetida promoted the B. bassiana TST05 diffusing downwards in the soil, while decreasing active fungal spores. After passing through the earthworm gut and excretion, the living B. bassiana individuals still had activity and pathogenicity to insects. The germination rate of the viable fungal spores was 15.09% and the infection rate to the insect larvae of Atrijuglans hetaohei Yang reached 62.35%, 80.95% and 100% after infection at 7 d, 10 d, and 14 d, respectively. The results showed that action and feeding of earthworms promoted the distribution of B. bassiana TST05 in soil, but decreased B. bassiana viable spores. This study is important for understanding the interaction between earthworms and B. bassiana in soil and for guiding the scientific application of B. bassiana in the biological control of pests.


Asunto(s)
Beauveria , Oligoquetos , Animales , Humanos , Insectos , Control Biológico de Vectores/métodos , Suelo , Esporas Fúngicas , Virulencia
14.
Biomed Pharmacother ; 146: 112585, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34968923

RESUMEN

The balance between ubiquitination and deubiquitination is crucial for protein stability, function and location under physiological conditions. Dysregulation of E1/E2/E3 ligases or deubiquitinases (DUBs) results in malfunction of the ubiquitin system and is involved in many diseases. Increasing reports have indicated that ubiquitin-specific peptidases (USPs) play a part in the progression of many kinds of cancers and could be good targets for anticancer treatment. Glioma is the most common malignant tumor in the central nervous system. Clinical treatment for high-grade glioma is unsatisfactory thus far. Multiple USPs are dysregulated in glioma and have the potential to be therapeutic targets. In this review, we collected studies on the roles of USPs in glioma progression and summarized the mechanisms of USPs in glioma tumorigenesis, malignancy and chemoradiotherapy resistance.


Asunto(s)
Glioma/fisiopatología , Ubiquitina-Proteína Ligasas/fisiología , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación/fisiología , Animales , Autofagia/fisiología , Carcinogénesis/metabolismo , Reparación del ADN/fisiología , Resistencia a Antineoplásicos/fisiología , Humanos , Tolerancia a Radiación/fisiología , Transducción de Señal/fisiología
15.
Oxid Med Cell Longev ; 2022: 7175027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035215

RESUMEN

Hypertrophic obesity, characterized by an excessive expansion of subcutaneous adipocytes, causes chronic inflammation and insulin resistance. It is the primary feature of obesity in middle-aged and elderly individuals. In the adipose microenvironment, a high level of endoplasmic reticulum (ER) stress and changes in the extracellular vesicle (EV) composition of adipocytes may cause the senescence and restrained differentiation of progenitor cells of adipose, including adipose-derived mesenchymal stem cells (ASCs). In this study, a hypertrophic obesity mouse model was established, and the effects of adipocytes on the ER stress and senescence of ASCs were observed in a coculture of control ASCs and hypertrophic obesity mouse adipocytes or their derived EVs. The adipocytes of hypertrophic obesity mice were treated with GW4869 or an iron chelation agent to observe the effects of EVs secreted by adipocytes and their iron contents on the ER stress and senescence of ASCs. Results showed higher ER stress level and senescence phenotypes in the ASCs from the hypertrophic obesity mice than in those from the control mice. The ER stress, senescence phenotypes, and ferritin level of ASCs can be aggravated by the coculture of ASCs with adipocytes or EVs released by them from the hypertrophic obesity mice. GW4869 or iron chelator treatment improved the ER stress and senescence of the ASCs cocultured with EVs released by the adipocytes of the hypertrophic obesity mice. Our findings suggest that EV-mediated transmissible ER stress is responsible for the senescence of ASCs in hypertrophic obesity mice.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Adipocitos , Tejido Adiposo , Animales , Estrés del Retículo Endoplásmico , Ratones , Obesidad
16.
Front Oncol ; 12: 881801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600392

RESUMEN

The suppressor of cytokine signaling (SOCS) family contains eight members, including SOCS1-7 and CIS, and SOCS3 has been shown to inhibit cytokine signal transduction in various signaling pathways. Although several studies have currently shown the correlations between SOCS3 and several types of cancer, no pan-cancer analysis is available to date. We used various computational tools to explore the expression and pathogenic roles of SOCS3 in several types of cancer, assessing its potential role in the pathogenesis of cancer, in tumor immune infiltration, tumor progression, immune evasion, therapeutic response, and prognostic. The results showed that SOCS3 was downregulated in most The Cancer Genome Atlas (TCGA) cancer datasets but was highly expressed in brain tumors, breast cancer, esophageal cancer, colorectal cancer, and lymphoma. High SOCS3 expression in glioblastoma multiforme (GBM) and brain lower-grade glioma (LGG) were verified through immunohistochemical experiments. GEPIA and Kaplan-Meier Plotter were used, and this bioinformatics analysis showed that high SOCS3 expression was associated with a poor prognosis in the majority of cancers, including LGG and GBM. Our analysis also indicated that SOCS3 may be involved in tumor immune evasion via immune cell infiltration or T-cell exclusion across different types of cancer. In addition, SOCS3 methylation was negatively correlated with mRNA expression levels, worse prognoses, and dysfunctional T-cell phenotypes in various types of cancer. Next, different analytical methods were used to select genes related to SOCS3 gene alterations and carcinogenic characteristics, such as STAT3, SNAI1, NFKBIA, BCL10, TK1, PGS1, BIRC5, TMC8, and AFMID, and several biological functions were identified between them. We found that SOCS3 was involved in cancer development primarily through the JAK/STAT signaling pathway and cytokine receptor activity. Furthermore, SOCS3 expression levels were associated with immunotherapy or chemotherapy for numerous types of cancer. In conclusion, this study showed that SOCS3 is an immune-oncogenic molecule that may possess value as a biomarker for diagnosis, treatment, and prognosis of several types of cancer in the future.

17.
Front Oncol ; 12: 896433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646697

RESUMEN

Metabolic reprogramming is a hallmark of glioma, and sterol O-acyltransferase 1 (SOAT1) is an essential target for metabolic therapy. However, the prognostic value of SOAT1 and its association with immune infiltration has not been fully elucidated. Using RNA-seq and clinical data of glioma patients from The Cancer Genome Atlas (TCGA), SOAT1 was found to be correlated with poor prognosis in glioma and the advanced malignancy of clinicopathological characteristics. Next, the correlation between SOAT1 expression and tumor-infiltrating immune cells was performed using the single-sample GSEA algorithm, gene expression profiling interactive analysis (GEPIA), and tumor immune estimation resource version 2 (TIMER2.0); it was found that SOAT1 expression was positively correlated with multiple tumor-infiltrating immune cells. To further verify these results, immunofluorescence was conducted on paraffin-embedded glioma specimens, and a positive trend of the correlation between SOAT1 expression and Treg infiltration was observed in this cohort. Finally, differentially expressed gene analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to explore the biological processes and signaling pathways that SOAT1 may be involved in during glioma pathogenesis. A protein-protein interaction network was established, and co-expression analysis was conducted to investigate the regulatory mechanism of SOAT1 in glioma. To the best of our knowledge, this is the first comprehensive study reporting that SOAT1 may serve as a novel prognostic biomarker associated with immune infiltrates, providing a novel perspective for glioma metabolic therapy.

18.
Autophagy ; 18(6): 1433-1449, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34740307

RESUMEN

Free spread is a classical mode for mammalian virus transmission. However, the efficiency of this transmission approach is generally low as there are structural barriers or immunological surveillances in the extracellular environment under physiological conditions. In this study, we systematically analyzed the spreading of classical swine fever virus (CSFV) using multiple viral replication analysis in combination with antibody neutralization, transwell assay, and electron microscopy, and identified an extracellular vesicle (EV)-mediated spreading of CSFV in cell cultures. In this approach, intact CSFV virions are enclosed within EVs and transferred into uninfected cells with the movement of EVs, leading to an antibody-resistant infection of the virus. Using fractionation assays, immunostaining, and electron microscopy, we characterized the CSFV-containing EVs and demonstrated that the EVs originated from macroautophagy/autophagy. Taken together, our results showed a new spreading mechanism for CSFV and demonstrated that the EVs in CSFV spreading are closely related to autophagy. These findings shed light on the immune evasion mechanisms of CSFV transmission, as well as new functions of cellular vesicles in virus lifecycles.Abbreviations: 3-MA: 3-methyladenine; CCK-8: Cell Counting Kit-8; CSF: classical swine fever; CQ: chloroquine; CSFV: classical swine fever virus; DAPI, 4-,6-diamidino-2-phenylindole; EVs: extracellular vesicles; hpi: h post infection; IEM: immunoelectron microscopy; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MOI: multiplicity of infection; MVs: microvesicles; ND50: half neutralizing dose; PCR: polymerase chain reaction; PBS: phosphate-buffered saline; SEC: size-exclusion chromatography; siRNA: small interfering RNA; TEM: transmission electron microscopy.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Vesículas Extracelulares , Animales , Anticuerpos , Autofagia , Técnicas de Cultivo de Célula , Línea Celular , Peste Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/fisiología , Vesículas Extracelulares/metabolismo , Mamíferos/metabolismo , ARN Interferente Pequeño/metabolismo , Porcinos , Replicación Viral
19.
J Cancer ; 13(6): 1745-1757, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399707

RESUMEN

Glioblastoma (GBM) is the most lethal malignant tumor in the central nervous system, with a median survival of only 14 months. Cholesterol, which is the main component of cell membrane and the precursor of many hormones, is one of the most important lipid components in human body. Since reprogramming of the cholesterol metabolic profile has been discovered in many cancers including GBM, cholesterol metabolism becomes a promising potential target for therapy. Since GBM cells rely on external cholesterol to survive and accumulate lipid droplets to meet their rapid growth needs, targeting the metabolism of cholesterol by different strategies including inhibition of cholesterol uptake and promotion of cholesterol efflux by activating LXRs and disruption of cellular cholesterol trafficking, inhibition of SREBP signaling, inhibition of cholesterol esterification, could potentially oppose the growth of glial tumors. In this review, we discussed the above findings and describe cholesterol synthesis and homeostatic feedback pathways in normal brain tissues and brain tumors, statin use in GBM and the role of lipid rafts and cholesterol precursors and oxysterols in the treatment and pathogenesis of GBM are also summarized.

20.
Oncol Lett ; 23(1): 5, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34820004

RESUMEN

Glioblastoma multiforme (GBM) is the most common type of primary brain tumor in adults. GBM is characterized by a high degree of malignancy and aggressiveness, as well as high morbidity and mortality rates. GBM is currently treatable via surgical resection, chemotherapy and radiotherapy, but the prognosis of patients with GBM is poor. The suppressor of cytokine signaling (SOCS) protein family comprises eight members, including SOCS1-SOCS7 and cytokine-inducible SH2-containing protein. SOCS proteins regulate the biogenesis of GBM via the JAK/STAT and NF-κB signaling pathways. Driven by NF-κB, the expression of SOCS proteins can serve as a negative regulator of the JAK/STAT signaling pathway and exerts a potential inhibitory effect on GBM. In GBM, E3 ubiquitin ligase is involved in the regulation of cellular functions, such as the receptor tyrosine kinase (RTK) survival signal, in which SOCS proteins negatively regulate RTK signaling, and kinase overexpression or mutation can lead to the development of malignancies. Moreover, SOCS proteins affect the proliferation and differentiation of GBM cells by regulating the tumor microenvironment. SOCS proteins also serve specific roles in GBM of different grades and different isocitrate dehydrogenase mutation status. The aim of the present review was to describe the biogenesis and function of the SOCS protein family, the roles of SOCS proteins in the microenvironment of GBM, as well as the role of this protein family and E3 ubiquitin ligases in GBM. Furthermore, the role of SOCS proteins as diagnostic and prognostic markers in GBM and their potential role as GBM therapeutics were explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA