Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Pestic Biochem Physiol ; 201: 105899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685208

RESUMEN

This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.


Asunto(s)
Aedes , Proteínas de Insectos , Ivermectina , Animales , Aedes/efectos de los fármacos , Aedes/genética , Aedes/metabolismo , Ivermectina/farmacología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Tripsina/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Fertilidad/efectos de los fármacos , Resistencia a los Insecticidas/genética , Inhibidores de Tripsina/metabolismo , Inhibidores de Tripsina/farmacología , Simulación del Acoplamiento Molecular , Insecticidas/farmacología
2.
BMC Genomics ; 24(1): 301, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270481

RESUMEN

BACKGROUND: The behaviors and ontogeny of Aedes aegypti are closely related to the spread of diseases caused by dengue (DENV), chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YFV) viruses. During the life cycle, Ae. aegypti undergoes drastic morphological, metabolic, and functional changes triggered by gene regulation and other molecular mechanisms. Some essential regulatory factors that regulate insect ontogeny have been revealed in other species, but their roles are still poorly investigated in the mosquito. RESULTS: Our study identified 6 gene modules and their intramodular hub genes that were highly associated with the ontogeny of Ae. aegypti in the constructed network. Those modules were found to be enriched in functional roles related to cuticle development, ATP generation, digestion, immunity, pupation control, lectins, and spermatogenesis. Additionally, digestion-related pathways were activated in the larvae and adult females but suppressed in the pupae. The integrated protein‒protein network also identified cilium-related genes. In addition, we verified that the 6 intramodular hub genes encoding proteins such as EcKinase regulating larval molt were only expressed in the larval stage. Quantitative RT‒PCR of the intramodular hub genes gave similar results as the RNA-Seq expression profile, and most hub genes were ontogeny-specifically expressed. CONCLUSIONS: The constructed gene coexpression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. Ultimately, these findings will be key in identifying potential molecular targets for disease control.


Asunto(s)
Aedes , Dengue , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Masculino , Animales , Femenino , Fiebre Amarilla/genética , Virus Zika/genética , Redes Reguladoras de Genes , Mosquitos Vectores , Proteínas/genética , Larva
3.
BMC Vet Res ; 19(1): 213, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853405

RESUMEN

Anaplasmosis is a highly prevalent tick-borne intracellular bacterial disease that affects various host species globally, particularly ruminants in tropical and subtropical regions. However, information regarding the distribution and epidemiology of anaplasmosis in small and large ruminants on Hainan Isalnd is limited. To address this knowledge gap, the present study aimed to assess the occurrence of Anaplasma spp. infections in goats (N = 731) and cattle (N = 176) blood samples using nested PCR and conventional PCR based assays. The results revealed an overall prevalence of 30.1% in goats and 14.8% in cattle. The infection rates of A. bovis, A. phagocytophilum, A. ovis and A. capra in goat samples were 22.7%, 13.8%, 2.0% and 3.4%, respectively, while the infection rates of A. bovis, A. phagocytophilum and A. marginale in cattle samples were 11.4%, 6.3% and 5.7%, respectively. A. bovis exhibited the highest prevalence among the Anaplasma spp. in both goat and cattle samples. In addition, the most frequent co-infection was the one with A. phagocytophilum and A. bovis. It was found that the age, sex and feeding habits of cattle and goats were considered to be important risk factors. Evaluation of the risk factor relating to the rearing system showed that the infection rate for the free-range goats and cattle was significantly higher when compared with stall-feeding system.This study represents one of the largest investigations on the distribution, prevalence, and risk factors associated with Anaplasma infection in ruminants on Hainan Island, highlighting a higher circulation of the infection in the region than previously anticipated. Further reasesrch is necessary to investigate tick vectors, reservoir animals, and the zoonotic potential of the Anaplasma spp. in this endemic region of Hainan Island.


Asunto(s)
Anaplasmosis , Enfermedades de los Bovinos , Enfermedades de las Cabras , Enfermedades de las Ovejas , Enfermedades por Picaduras de Garrapatas , Animales , Bovinos , Ovinos , Anaplasma/genética , Anaplasmosis/epidemiología , Anaplasmosis/microbiología , Cabras/microbiología , Rumiantes/microbiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , China/epidemiología , Variación Genética , Filogenia , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/microbiología , Enfermedades de los Bovinos/epidemiología , Enfermedades de las Ovejas/epidemiología
4.
Parasitol Res ; 122(10): 2379-2383, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615736

RESUMEN

Babesiosis is a significant tick-borne disease, which is globally prevalent. Many previous research studies have discussed the presence of Babesia gibsoni, Babesia vogeli, and Babesia canis in dogs in China. In the present study, we have used distinct molecular approaches to detect the presence of Babesia spp. in dogs of Hainan Province/Island, China. A total of 1106 dog blood samples were collected from the Island, of which 61 dog samples were found to be positive for Babesia vogeli. The highest infection rate was 56.7% (17/30) detected from Tunchang, followed by 25.0% (3/12) from Baisha and 10.4% (5/48) from Wenchang. There was only one positive case of Babesia gibsoni, and the infection rate was found to be 0.1% (1/1106). The sequencing results showed that the subjected sample sequences were identical and resembled the Babesia vogeli and Babesia gibsoni sequences available in the database. The results derived from this study will be helpful for planning effective strategies for the treatment, control, and prevention of babesiosis in dogs of Hainan Province/Island.


Asunto(s)
Babesia , Babesiosis , Perros , Animales , Babesia/genética , Babesiosis/epidemiología , Filogenia , China/epidemiología
5.
Parasitol Res ; 120(5): 1799-1809, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33649963

RESUMEN

Present-day diagnostic tools and technologies for canine diseases and other vector-borne parasitic diseases hardly meet the requirements of an efficient and rapid diagnostic tool, which can be suitable for use at the point-of-care in resource-limited settings. Loop-mediated isothermal amplification (LAMP) technique has been always a method of choice in the development and validation of quick, precise, and sensitive diagnostic assays for pathogen detection and to reorganize point-of-care (POC) molecular diagnostics. In this study, we have demonstrated an efficient detection system for parasitic vector-borne pathogens like Ehrlichia canis and Hepatozoon canis by linking the LAMP assay to a smartphone via a simple, inexpensive, and a portable "LAMP box," All the components of the LAMP box were connected to each other wirelessly. This LAMP box was made up of an isothermal heating pad mounted below an aluminum base which served as a platform for the reaction tubes and LAMP assay. The entire setup could be connected to a smartphone via an inbuilt Wi-Fi that allowed the user to establish the connection to control the LAMP box. A 5 V USB power source was used as a power supply. The sensitivity of the LAMP assay was estimated to be up to 10-6 dilution limit using the amplified, purified, and quantified specific DNA templates. It can also serve as an efficient diagnostic platform for many other veterinary infectious or parasitic diseases of zoonotic origin majorly towards field-based diagnostics.


Asunto(s)
Coccidiosis/veterinaria , Enfermedades de los Perros/diagnóstico , Ehrlichiosis/veterinaria , Técnicas de Diagnóstico Molecular , Teléfono Inteligente , Enfermedades Transmitidas por Vectores/diagnóstico , Animales , Coccidiosis/diagnóstico , Enfermedades de los Perros/parasitología , Perros , Ehrlichia canis/genética , Ehrlichiosis/diagnóstico , Eucoccidiida , Técnicas de Diagnóstico Molecular/veterinaria , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Pruebas en el Punto de Atención , Sensibilidad y Especificidad
6.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(4): 425-430, 2021 Apr.
Artículo en Zh | MEDLINE | ID: mdl-33840418

RESUMEN

As one of the most important non-nutritional factors associated with children's growth and development, feeding problems in children are getting more and more attention from medical professionals and guardians. The evaluation of feeding problems has developed from the single-factor and descriptive research in the past to the multi-factor and analytical research at present, and thus a good quantitative analysis system is increasingly important for researchers. However, the development of localized quantitative analysis tools remains a weak link in this field. Therefore, it is a research hotspot to develop child feeding assessment scales and questionnaires with high reliability, validity, and operability in combination with China's cultural background and eating habits and provide effective assessment tools for feeding problems in Chinese children. Through classification based on research mode and screening, this article reviews the research findings in the field of child feeding, so as to provide a basis for future research.


Asunto(s)
Conducta Alimentaria , Relaciones Padres-Hijo , Niño , Humanos , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
7.
Ecotoxicology ; 24(7-8): 1574-82, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25666496

RESUMEN

Pyrene, a typical polycyclic aromatic hydrocarbon, is a common pollutant in the marine environment. Polycyclic aromatic hydrocarbons initiate cellular detoxification in an exposed organism via the activation of the aryl hydrocarbon receptor (AhR). Subsequent metabolism of these xenobiotics is mainly by the cytochrome P450 enzymes of the phase I detoxification system. Full-length complementary DNA sequences from the pearl oyster Pinctada martensii (pm) encoding AhR and cytochrome P4 were cloned. The P. martensii AhR complementary DNA sequence constitutes an open reading frame that encodes for 848 amino acids. Sequence analysis indicated PmAhR showed high similarity with its homologues of other bivalve species. The cytochrome P(CYP)4 complementary DNA sequence of P. martensii constitutes an open reading frame that encodes for 489 amino acids. Quantitative real-time analysis detected both PmAhR and PmCYP4 messenger RNA expressions in the mantle, gill, hepatapancreas and adductor muscle of P. martensii exposed to pyrene. The highest transcript-band intensities of PmAhR and PmCYP4 were observed in the gill. Temporal expression of PmAhR and PmCYP4 messenger RNAs induction was observed in gills and increased between 3 and 5 days post exposure; then returned to control level. These results suggest that messenger RNAs of PmAhR and PmCYP4 in pearl oysters might be useful parameters for monitoring marine environment pyrene pollution.


Asunto(s)
Citocromo P-450 CYP4A/genética , Expresión Génica/efectos de los fármacos , Pinctada/efectos de los fármacos , Pinctada/genética , Pirenos/toxicidad , Receptores de Hidrocarburo de Aril/genética , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Clonación Molecular , Citocromo P-450 CYP4A/metabolismo , Datos de Secuencia Molecular , Pinctada/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Análisis de Secuencia de ADN
8.
Insects ; 15(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38921167

RESUMEN

iGABAR, a member of the Cys-loop ligand-gated ion channel superfamily, is a significant target of the insecticide ivermectin (IVM). GRD is the potential subunit of the insect iGABAR. However, little information about GRD in Ae. aegypti has been reported. In this study, we involved cloning and characterizing the iGABAR subunit GRD of Ae. aegypti (Ae-GRD). Sequence analysis indicated that Ae-GRD, as part of the cysteine-loop ligand-gated ion channel family, is similar to other insect GRD. RNA interference (RNAi) was employed to explore IVM resistance in Ae. aegypti, resulting in a significant reduction in Ae-GRD expression (p < 0.05), and the mortality of Ae. aegypti adults with Ae-GRD knockdown was significantly decreased after exposure to ivermectin. Bioinformatics prediction identified miR-71-5p as a potential regulator of Ae-GRD. In vitro, dual-luciferase reporter assays confirmed that Ae-GRD expression was regulated by miR-71-5p. Microinjection of miR-71-5p mimics upregulated miR-71-5p expression and downregulated Ae-GRD gene expression, reducing mortality by 34.52% following IVM treatment. Conversely, microinjection of a miR-71-5p inhibitor decreased miR-71-5p expression but did not affect the susceptibility to IVM despite increased Ae-GRD expression (p < 0.05). In conclusion, Ae-GRD, as one of the iGABA receptor subunits, is a potential target of ivermectin. It may influence ivermectin resistance by modulating the GABA signaling pathway. The inhibition of Ae-GRD expression by miR-71-5p decreased ivermectin resistance and consequently lowered the mortality rate of Ae. aegypti mosquitoes. This finding provides empirical evidence of the relationship between Ae-GRD and its miRNA in modulating insecticide resistance, offering novel perspectives for mosquito control strategies.

9.
Sci Rep ; 14(1): 7703, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565937

RESUMEN

Bioactive molecules in tick saliva are considered to be key to successful feeding and further the transmission of tick-borne pathogens. Problems such as pathogen transmission and animal weight loss result in tick infestation can cause tremendous economic losses to the livestock industry. Therefore, the development of a universal tick vaccine is urgently needed. In this paper, three serine protease inhibitor (serpin) proteins RMS-3, L7LRK7 and L7LTU1 were analyzed with bioinformatics methods. Subsequently the proteins were expressed and purified, and inoculated into Kunming mice for immune protection analysis. The amino acid sequence similarities between RMS-3, L7LRK7 and L7LTU1 were up to 90% in Rhipicephalus sanguineus. The recombinant RMS-3 + L7LRK7 + L7LTU1 showed anticoagulant reaction function and could inhibit the activity of CD4+ lymphocytes, when inoculated into Kunming mice. Additionally, After the immunized mice were challenged with Rhipicephalus sanguineus, the percentage of larvae and nymphs that were fully engorged dropped to 40.87% (P < 0.05) and 87.68% (P > 0.05) in the RmS-3 + L7LRK7 immune group, 49.57% (P < 0.01) and 52.06% (P < 0.05) in the RmS-3 + L7LTU1 group, and 45.22% (P < 0.05) and 60.28% (P < 0.05) in the RmS-3 + L7LRK7 + L7LTU1 immune group, in comparison with the control group. These data indicate that RmS-3 + L7LRK7 + L7LTU1 has good immune protection and has the potential to be developed into a vaccine against the larvae and nymphs of R. sanguineus.


Asunto(s)
Animales no Consanguíneos , Rhipicephalus sanguineus , Rhipicephalus , Vacunas , Ratones , Animales , Inhibidores de Serina Proteinasa/metabolismo , Rhipicephalus/metabolismo , Ninfa , Larva
10.
Int J Biol Macromol ; 268(Pt 1): 131704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670198

RESUMEN

Mosquitoes form a vital group of vector insects, which can transmit various diseases and filarial worms. The cuticle is a critical structure that protects mosquitoes from adverse environmental conditions and penetration resistance. Thus, cuticle proteins can be used as potential targets for controlling the mosquito population. In the present study, we found that AaCPR100A is a structural protein in the soft cuticle, which has flexibility and elasticity allowing insects to move or fly freely, of Aedes aegypti. RNA interference (RNAi) of AaCPR100A caused high mortality in Aedes aegypti larvae and adults and significantly decreased the egg hatching rate. Transmission electron microscopy (TEM) analysis revealed that the larval microstructure had no recognizable endocuticle in AaCPR100A-deficient mosquitoes. A yeast two-hybrid assay was performed to screen proteins interacting with AaCPR100A. We verified that the G12-like protein had the strongest interaction with AaCPR100A using yeast two-hybrid and GST pull-down assays. Knockdown of G12-like transcription resulted in high mortality in Ae. aegypti larvae, but not in adults. Interestingly, RNAi of G12-like rescued the high mortality of adults caused by decreased AaCPR100A expression. Additionally, adults treated with G12-like dsRNA were found to be sensitive to low temperature, and their eggshell formation and hatching were decreased. Overall, our results demonstrated that G12-like may interacts with AaCPR100A, and both G12-like and AaCPR100A are involved in Ae. aegypti cuticle development and eggshell formation. AaCPR100A and G12-like can thus be considered newly potential targets for controlling the Ae. aegypti mosquito.


Asunto(s)
Aedes , Proteínas de Insectos , Animales , Aedes/genética , Aedes/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/metabolismo , Larva/crecimiento & desarrollo , Interferencia de ARN , Unión Proteica , Técnicas del Sistema de Dos Híbridos
11.
Gene ; 852: 147061, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36423775

RESUMEN

Kynurenic acid (KYNA), an unavoidable tryptophan metabolite during fermentation is naturally blended with alcohol in all alcoholic beverages. Thus, alcohol drinking inevitably results in co-intake of KYNA. Effects of alcohol or KYNA on human health have been widely studied. However, the combined effects of both remain unknown. Here we report that alcohol and KYNA have a synergistic impact of on global gene expression, especially the gene sets related to tryptophan metabolism and cell signaling. Adult mice were exposed to alcohol (ethanol) and/or KYNA daily for a week. Transcriptomes of the brain, kidney and liver were profiled via bulk RNA sequencing. Results indicate that while KYNA alone largely promotes, and alcohol alone mostly inhibits gene expression, alcohol and KYNA co-administration has a stronger inhibition of global gene expression. Tryptophan metabolism is severely skewed towards kynurenine pathway by decreasing tryptophan hydroxylase 2 and increasing tryptophan dioxygenase. Quantification of tryptophan metabolic enzymes corroborates the transcriptional changes of these enzymes. Furthermore, the co-administration greatly enhances the GnRH signaling pathway. This research provides critical data to better understand the effects of alcohol and KYNA in mix on human health.


Asunto(s)
Ácido Quinurénico , Triptófano , Adulto , Ratones , Animales , Humanos , Triptófano/metabolismo , Ácido Quinurénico/metabolismo , Etanol/farmacología , Quinurenina/metabolismo , Transducción de Señal
12.
Vet Sci ; 10(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37235422

RESUMEN

Anaplasmosis is a serious infection which is transmitted by ticks and mosquitos. There are very few reports and studies that have been carried out to understand the prevalence, distribution, and epidemiological profile of Anaplasma spp. infection in dogs in Hainan province/island. In the present study, we have tried to understand the prevalence, distribution, and occurrence of Anaplasma spp. infections in dogs (n = 1051) in Hainan Island/Province to establish a surveillance-based study. The confirmed positive samples by Polymerase chain reaction (PCR) were subjected to capillary sequencing for further strain-specific confirmation, followed by the construction of phylogenetic trees to determine their genetic relations. Various statistical tools were used to analyze related risk factors. There were three species of Anaplasma detected from the Hainan region; namely, A. phagocytophilum, A. bovis, and A. platys. The overall prevalence of Anaplasma is 9.7% (102/1051). A. phagocytopihum was prevalent in 1.0% of dogs (11/1051), A. bovis was found in 2.7% of dogs (28/1051), and A. platys in 6.0% of dogs (63/1051). Our surveillance-based study conducted to understand the occurrence and distribution pattern of Anaplasma spp. in Hainan will help in designing effective control measures along with management strategies so as to treat and control the infection in the area.

13.
Appl Biochem Biotechnol ; 195(12): 7483-7501, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37004647

RESUMEN

Riemerella anatipestifer (RA) is one of the most harmful bacterial pathogens in waterfowl and causes enormous economic loss worldwide. Due to weak cross-immunity protection against different serotypes of RA, inactivated and attenuated vaccines are only effective for RA of specific serotypes. In this paper, outer membrane protein YaeT in RA was analyzed through bioinformatics, in vivo, and in vitro assays. Homology, physicochemical and structural properties, transmembrane domains, and B-cell binding epitopes were investigated. The recombinant outer membrane protein YaeT was then inoculated into Cherry Valley ducks to analyze its immune protection against RA. Results showed that the protein was conservative in different RA strains and had sufficient B-cell binding epitopes. The immunized duck serum contains high-affinity antibodies that could activate complement and promote the opsonophagocytosis of RA by phagocytes. After RA challenge, the survival rate of the YaeT protein-immunized ducks was 80%.


Asunto(s)
Infecciones por Flavobacteriaceae , Enfermedades de las Aves de Corral , Animales , Patos/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Proteínas Recombinantes , Proteínas de la Membrana , Inmunidad , Epítopos
14.
Insects ; 14(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835758

RESUMEN

Long-chain fatty acid elongases (ELOs) play important roles in the metabolism of fatty acids in insects. In this study, the genes for two elongases from Aedes aegypti were identified, AeELO2 and AeELO9. Quantitative real time PCR showed that AeELO2 and AeELO9 are expressed at all developmental stages and some body parts, but with different expression patterns. RNAi-mediated knockdown of AeELO2 and AeELO9 was performed to investigate their roles in the development, growth, osmotic balance, and cold tolerance of Ae. aegypti. Knockdown of AeELO2 slowed larval growth and development by causing molting abnormalities. Additionally, 33% ± 3.3% of adults died during oviposition, accompanied by an abnormal extension of cuticles in AeELO2-dsRNA knockdown mosquitos. Knockdown of AeEL09 resulted in abnormal balance of cuticular osmotic pressure and a reduction in egg production. The maximal mRNAs of AeELO2 and AeELO9 were detected in eggs at 72 h after oviposition. Moreover, AeELO2 knockdown reduced the egg hatching rates and AeELO9 knockdown larvae did not develop well. In summary, AeELO2 is involved in larval molting and growth, and its knockdown affects the flexibility and elasticity of adult mosquito cuticles. AeELO9 regulates cold tolerance, osmotic balance, and egg development in Ae. aegypti.

15.
Insect Sci ; 30(2): 569-581, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35922881

RESUMEN

Arylalkylamine N-acetyltransferase (aaNAT), considered a potential new insecticide target, catalyzes the acetylation of arylalkylamine substrates such as serotonin and dopamine and, hence, mediates diverse functions in insects. However, the origin of insect aaNATs (iaaNATs) and the evolutionary process that generates multiple aaNATs in mosquitoes remain largely unknown. Here, we have analyzed the genomes of 33 species to explore and expand our understanding of the molecular evolution of this gene family in detail. We show that aaNAT orthologs are present in Bacteria, Cephalochordata, Chondrichthyes, Cnidaria, Crustacea, Mammalia, Placozoa, and Teleoste, as well as those from a number of insects, but are absent in some species of Annelida, Echinozoa, and Mollusca as well as Arachnida. Particularly, more than 10 aaNATs were detected in the Culicinae subfamily of mosquitoes. Molecular evolutionary analysis of aaNAT/aaNAT-like genes in mosquitoes reveals that tandem duplication events led to gene expansion in the Culicinae subfamily of mosquitoes more than 190 million years ago. Further selection analysis demonstrates that mosquito aaNATs evolved under strongly positive pressures that generated functional diversity following gene duplication events. Overall, this study may provide novel insights into the molecular evolution of the aaNAT family in mosquitoes.


Asunto(s)
Culicidae , Animales , Secuencia de Aminoácidos , Culicidae/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , Evolución Molecular , Genómica
16.
Front Physiol ; 13: 932130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160860

RESUMEN

Rhipicephalus sanguineus, the brown dog tick, is the most widespread tick in the world and a predominant vector of multiple pathogens affecting wild and domestic animals. There is an increasing interest in understanding the role of tick microbiome in pathogen acquisition and transmission as well as in environment-vector interfaces. Several studies suggested that the tick microbial communities are under the influence of several factors including the tick species, dietary bloodmeal, and physiological stress. Compared with insects, very little of the microbial community is known to contribute to the nutrition of the host. Therefore, it is of significance to elucidate the regulation of the microbial community of Rh. Sanguineus under starvation stress. Starvation stress was induced in wild-type adults (1 month, 2 months, 4 months, 6 months) and the microbial composition and diversity were analyzed before and after blood feeding. After the evaluation, it was found that the microbial community composition of Rh. sanguineus changed significantly with starvation stress. The dominant symbiotic bacteria Coxiella spp. of Rh. sanguineus gradually decreased with the prolongation of starvation stress. We also demonstrated that the starvation tolerance of Rh. sanguineus was as long as 6 months. Next, Coxiella-like endosymbionts were quantitatively analyzed by fluorescence quantitative PCR. We found a pronounced tissue tropism in the Malpighian tubule and female gonad, and less in the midgut and salivary gland organs. Finally, the blood-fed nymphs were injected with ofloxacin within 24 h. The nymphs were allowed to develop into adults. It was found that the adult blood-sucking rate, adult weight after blood meal, fecundity (egg hatching rate), and feeding period of the newly hatched larvae were all affected to varying degrees, indicating that the removal of most symbiotic bacteria had an irreversible effect on it.

17.
Pest Manag Sci ; 78(10): 4173-4182, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35690922

RESUMEN

BACKGROUND: Ionotropic γ-aminobutyric acid (iGABA) receptors are involved in various physiological activities in insects, including sleep, olfactory memory, movement, and resistance to viruses. Ivermectin and fluralaner can disturb the insect nervous system by binding to iGABA receptors, and are therefore an effective means for controlling insect pests. However, the molecular mechanisms underlying the insecticidal effect of both the compounds on Aedes. aegypti remain unexplored. RESULTS: In this study, we investigated the spatiotemporal expression profile of Ae. aegypti RDL (Ae-RDL), a subunit of iGABA receptor. RDL dsRNA suppressed the expression of Ae-RDL mRNA in Ae. aegypti larvae and adult by 60% and 50.67%,  resepectly. However, the physiology of Ae. aegypti larvae was not significantly affected. The mortality of Ae. aegypti larvae and adult females subjected to Ae-RDL knockdown significantly decreased after exposure to ivermectin and fluralaner. Additionally, Ae-RDL was cloned into Xenopus laevis oocytes and characterized using the two-electrode voltage-clamp method. The inward current was induced by GABA binding to the functional Ae-RDL homomeric receptors at a median effective concentration (EC50 ) of 100.4 ± 59.95 µM (n > 3). The significant inhibitory effect of ivermectin and fluralaner on inward current indicated that both insecticides exerted a significant antagonistic effect on Ae-RDL. However, ivermectin also showed strong agonistic as well as weak activation effects on Ae-RDL. These contrasting effects of ivermectin on Ae-RDL depended on ivermectin concentration. CONCLUSION: Our study revealed that Ae-RDL subunit is a target of ivermectin and fluralaner, providing new insights into the insecticidal mechanism of both compounds in Ae. aegypti. © 2022 Society of Chemical Industry.


Asunto(s)
Aedes , Insecticidas , Fiebre Amarilla , Aedes/genética , Aedes/metabolismo , Animales , Femenino , Insecticidas/farmacología , Isoxazoles , Ivermectina/farmacología , Larva/genética , Larva/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
18.
Parasite ; 29: 13, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35254256

RESUMEN

Theileria spp. are a group of parasites primarily transmitted by ticks and can pose a significant threat to domestic and wild animals globally. The main objective of this study was to understand the epidemiology of Theileria spp. in goats of Hainan Island/province, which is the only tropical region of China, and to study their hematological profiles in naturally infected goats. A total of 464 blood samples were collected from randomly selected local adult goats (Capra hircus, local domestic breed with black hair), from six cities and eight counties of Hainan, from November 2017 to October 2020. Blood smear microscopy of the sample and a nested polymerase chain reaction (nPCR) targeting the 18S rRNA gene combined with DNA sequencing were used to detect piroplasm infections in goats. Data analysis of the obtained sequences revealed that all the sequences were highly similar to the Theileria luwenshuni 18S rRNA gene sequence from the database. This result is consistent with the microscopic examination. In the hematological test, hematocrit, mean corpuscular volume, and mean corpuscular hemoglobin of the goats naturally infected with T. luwenshuni significantly increased, while mean corpuscular hemoglobin concentration and red blood cell distribution width (RDW) were significantly decreased. Results showed that T. luwenshuni could cause macrocytic, hypochromic anemia in goats. This study provides reliable and comprehensive information about the epidemiology of the parasite infections and hematological profile of the infected goats in Hainan, which encourages further investigations to develop practical control strategies for Theileria spp. infections in tropical areas.


TITLE: Identification de Theileria spp. et enquête sur les profils hématologiques de leurs infections chez les chèvres de l'île de Hainan, en Chine. ABSTRACT: Les Theileria spp. sont un groupe de parasites principalement transmis par les tiques qui peuvent constituer une menace importante pour les animaux domestiques et sauvages dans le monde. L'objectif principal de cette étude était de comprendre l'épidémiologie de Theileria spp. chez les chèvres de l'île/province de Hainan, qui est la seule région tropicale de Chine et étudier les profils hématologiques des chèvres naturellement infectées. 464 échantillons de sang ont été prélevés sur des chèvres adultes locales sélectionnées au hasard (Capra hircus, race domestique locale à poils noirs), dans 6 villes et 8 comtés de Hainan, de novembre 2017 à octobre 2020. L'étude microscopique du frottis sanguin de l'échantillon et la réaction en chaîne par polymérase nichée (nPCR) ciblant le gène de l'ARNr 18S combinée au séquençage de l'ADN ont été utilisées pour détecter les infections à piroplasmes chez les chèvres. L'analyse des séquences obtenues a révélé que toutes les séquences étaient très similaires à la séquence du gène de l'ARNr 18S de T. luwenshuni de la base de données. Le résultat est cohérent avec l'examen microscopique. Dans le test hématologique, l'hématocrite, le volume corpusculaire moyen et l'hémoglobine corpusculaire moyenne des chèvres naturellement infectées par T. luwenshuni ont augmenté de manière significative, tandis que la concentration moyenne d'hémoglobine corpusculaire et la largeur de distribution des globules rouges (RDW) ont été significativement diminuées. Les résultats ont montré que T. luwenshuni pouvait provoquer une anémie macrocytaire et une anémie hypochrome chez les chèvres. Cette étude fournit des informations fiables et complètes sur l'épidémiologie des infections parasitaires et le profil hématologique des chèvres infectées à Hainan, ce qui encourage des investigations supplémentaires pour développer des stratégies pratiques de contrôle des infections par Theileria spp. dans les zones tropicales.


Asunto(s)
Theileria , Theileriosis , Garrapatas , Animales , Bovinos , Cabras/parasitología , Filogenia , ARN Ribosómico 18S/genética , Theileria/genética , Theileriosis/epidemiología , Theileriosis/parasitología , Garrapatas/genética
19.
Insects ; 13(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893026

RESUMEN

Serotonin (5-HT) plays a vital role in many physiological processes in insects, regulating physiological activities such as growth and movement through multiple 5-HT receptors (5-HTRs), which were potential targets for some new insecticides. However, the specific function of individual 5-HTRs in Ae. aegypti is still unclear. In this study, we investigated the function of the 5-HT7A receptor during Ae. aegypti development. 5-HTR7A transcripts were detected at all stages of development by real-time PCR. The results indicated that the gene expression was highest in the limbs (p < 0.01). We also generated 5-HTR7A mutant mosquitoes using CRISPR-mediated gene editing. The mutants had an abnormal phenotype at the larval stage, including an aberrant head-to-chest ratio and decreased motor activity. The mutant pupae developed abnormally, and most died (56.67%) (p < 0.0001). Using external stimuli to larvae and pupae with abnormal phenotypes, we found the mutant G1 and G2 generations responded to external stimuli in a longer time than the wild-type (WT) mosquitoes, and most of the mutants were 2 to 3 s slower than the WTs to respond to external stimuli (p < 0.01). Due to higher mortality, mutant larvae and pupae had fewer numbers than the WTs. The egg hatching rate of mutant G1 and G2 generations was lower than that of the WTs (p < 0.01). The expression level of 5-HTR7A in the mutants decreased by about 65% compared with the control group using real-time PCR (p < 0.05). In all, the 5-HT7A receptor plays an important role in the metamorphosis, development and motor function of Aedes aegypti.

20.
BMC Evol Biol ; 11: 298, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21988730

RESUMEN

BACKGROUND: Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. RESULTS: We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. CONCLUSIONS: RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by Darwinian positive selection acting on the male reproductive system and possibly also on the central nervous system, which sheds light on understanding the role of homeobox genes in adaptive evolution.


Asunto(s)
Variaciones en el Número de Copia de ADN , Evolución Molecular , Genes Homeobox , Proteínas de Homeodominio/genética , Primates/genética , Animales , Encéfalo/metabolismo , Expresión Génica , Genes Ligados a X , Humanos , Hylobates , Macaca mulatta , Masculino , Datos de Secuencia Molecular , Pan troglodytes , Filogenia , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA