Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Cell Mol Med ; 28(8): e18276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546629

RESUMEN

Histidine triad nucleotide-binding protein 2 (HINT2) is an enzyme found in mitochondria that functions as a nucleotide hydrolase and transferase. Prior studies have demonstrated that HINT2 plays a crucial role in ischemic heart disease, but its importance in cardiac remodelling remains unknown. Therefore, the current study intends to determine the role of HINT2 in cardiac remodelling. HINT2 expression levels were found to be lower in failing hearts and hypertrophy cardiomyocytes. The mice that overexpressed HINT2 exhibited reduced myocyte hypertrophy and cardiac dysfunction in response to stress. In contrast, the deficiency of HINT2 in the heart of mice resulted in a worsening hypertrophic phenotype. Further analysis indicated that upregulated genes were predominantly associated with the oxidative phosphorylation and mitochondrial complex I pathways in HINT2-overexpressed mice after aortic banding (AB) treatment. This suggests that HINT2 increases the expression of NADH dehydrogenase (ubiquinone) flavoprotein (NDUF) genes. In cellular studies, rotenone was used to disrupt mitochondrial complex I, and the protective effect of HINT2 overexpression was nullified. Lastly, we predicted that thyroid hormone receptor beta might regulate HINT2 transcriptional activity. To conclusion, the current study showcased that HINT2 alleviates pressure overload-induced cardiac remodelling by influencing the activity and assembly of mitochondrial complex I. Thus, targeting HINT2 could be a novel therapeutic strategy for reducing cardiac remodelling.


Asunto(s)
Corazón , Remodelación Ventricular , Animales , Ratones , Remodelación Ventricular/genética , Mitocondrias , Hipertrofia , Complejo I de Transporte de Electrón/genética , Nucleótidos , Hidrolasas , Proteínas Mitocondriales/genética
2.
Cell Commun Signal ; 20(1): 43, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361231

RESUMEN

As an important mechanism to maintain cellular homeostasis, autophagy exerts critical functions via degrading misfolded proteins and damaged organelles. Recent years, alternative autophagy, a new type of autophagy has been revealed, which shares similar morphology with canonical autophagy but is independent of Atg5/Atg7. Investigations on different diseases showed the pivotal role of alternative autophagy during their physio-pathological processes, including heart diseases, neurodegenerative diseases, oncogenesis, inflammatory bowel disease (IBD), and bacterial infection. However, the studies are limited and the precise roles and mechanisms of alternative autophagy are far from clear. It is necessary to review current research on alternative autophagy and get some hint in order to provide new insight for further study. Video Abstract.


Asunto(s)
Autofagia , Enfermedades Neurodegenerativas , Homeostasis , Humanos , Proteínas
3.
Cell Commun Signal ; 20(1): 50, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410418

RESUMEN

Myocardial infarction (MI) is one of the most common cardiac emergencies with high morbidity and is a leading cause of death worldwide. Since MI could develop into a life-threatening emergency and could also seriously affect the life quality of patients, continuous efforts have been made to create an effective strategy to prevent the occurrence of MI and reduce MI-related mortality. Numerous studies have confirmed that neutrophils play important roles in inflammation and innate immunity, which provide the first line of defense against microorganisms by producing inflammatory cytokines and chemokines, releasing reactive oxygen species, and degranulating components of neutrophil cytoplasmic granules to kill pathogens. Recently, researchers reported that neutrophils are closely related to the severity and prognosis of patients with MI, and neutrophil to lymphocyte ratio in post-MI patients had predictive value for major adverse cardiac events. Neutrophils have been increasingly recognized to exert important functions in MI. Especially, granule proteins released by neutrophil degranulation after neutrophil activation have been suggested to involve in the process of MI. This article reviewed the current research progress of neutrophil granules in MI and discusses neutrophil degranulation associated diagnosis and treatment strategies. Video abstract Neutrophils played a crucial role throughout the process of MI, and neutrophil degranulation was the crucial step for the regulative function of neutrophils. Both neutrophils infiltrating and neutrophil degranulation take part in the injury and repair process immediately after the onset of MI. Since different granule subsets (e g. MPO, NE, NGAL, MMP-8, MMP-9, cathelicidin, arginase and azurocidin) released from neutrophil degranulation show different effects through diverse mechanisms in MI. In this review, we reviewed the current research progress of neutrophil granules in MI and discusses neutrophil degranulation associated diagnosis and treatment strategies. Myeloperoxidase (MPO); Neutrophil elastase (NE); Neutrophil gelatinase-associated lipocalin (NGAL); Matrix metalloproteinase 8 (MMP-8); Matrix metalloproteinase 9 (MMP-9).


Asunto(s)
Metaloproteinasa 9 de la Matriz , Infarto del Miocardio , Humanos , Lipocalina 2/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Infarto del Miocardio/etiología , Activación Neutrófila
4.
J Pharmacol Sci ; 143(3): 199-208, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32414690

RESUMEN

The optimum strategy for heart failure (HF) treatment has yet to be elucidated. This study intended to test the benefit of a combination of valsartan (VAL) and perifosine (PER), a specific AKT inhibitor, in protecting against pressure overload induced mouse HF. Mouse were subjected to aortic banding (AB) surgery to establish HF models and then were given vehicle (HF), VAL (50 mg/kg/d), PER (30 mg/kg/d) or combination of VAL and PER for 4 weeks. Mouse with sham surgery treated with VEH were used for control (VEH). VAL or PER treatment could significantly alleviate mouse heart weight, attenuate cardiac fibrosis and improve cardiac function. The combination treatment of VAL and PER presented much better benefit compared with VAL or PER group respectively. PER treatment significantly inhibited AKT/GSK3ß/mTORC1 signaling. Besides the classic AT1 inhibition, VAL treatment significantly inhibited MAPK (ERK1/2) signaling. Furthermore, VAL and PER treatment could markedly prevent neonatal rat cardiomyocyte hypertrophy and the activation of neonatal rat cardiac fibroblast. Combination of VAL and PER also presented superior beneficial effects than single treatment of VAL or PER in vitro experiments respectively. This study presented that the combination of valsartan and PER may be a potential treatment for HF prevention.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Fosforilcolina/análogos & derivados , Presión/efectos adversos , Valsartán/administración & dosificación , Animales , Modelos Animales de Enfermedad , Quimioterapia Combinada , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos , Fosforilcolina/administración & dosificación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
5.
J Cell Physiol ; 234(9): 15654-15667, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30741414

RESUMEN

Cardiac remodeling is associated with inflammation and apoptosis. Galangin, as a natural flavonol, has the potent function of regulating inflammation and apoptosis, which are factors related to cardiac remodeling. Beginning 3 days after aortic banding (AB) or Sham surgery, mice were treated with galangin for 4 weeks. Cardiac remodeling was assessed according to echocardiographic parameters, histological analyses, and hypertrophy and fibrosis markers. Our results showed that galangin administration attenuated cardiac hypertrophy, dysfunction, and fibrosis response in AB mice and angiotensin II-treated H9c2 cells. The inhibitory action of galangin in cardiac remodeling was mediated by MEK1/2-extracellular-regulated protein kinases 1/2 (ERK1/2)-GATA4 and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT)-glycogen synthase kinase 3ß (GSK3ß) activation. Furthermore, we found that galangin inhibited inflammatory response and apoptosis. Our findings suggest that galangin protects against cardiac remodeling through decreasing inflammatory responses and apoptosis, which are associated with inhibition of the MEK1/2-ERK1/2-GATA4 and PI3K-AKT-GSK3ß signals.

7.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1728-1743, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29476905

RESUMEN

Diabetic cardiomyopathy is associated with suppressed autophagy and augmented inflammation in the heart. The effects of Tax1 binding protein 1 (TAX1BP1) on both autophagy and inflammation suggest that it may participate in the progression of diabetic cardiomyopathy. Mice were injected with streptozotocin (STZ) to induce experimental diabetes. An adenovirus system was used to induce heart specific TAX1BP1 overexpression 12 weeks after STZ injection. TAX1BP1 expression was significantly decreased in STZ-induced diabetic mouse hearts. TAX1BP1 overexpression in the heart alleviated cardiac hypertrophy and fibrosis, attenuated inflammation, oxidative stress, and apoptosis, and improved cardiac function in STZ-induced diabetic mice. Diabetic mice exhibited decreased autophagy. By contrast, increased autophagy was observed in diabetic mice overexpressing TAX1BP1. TAX1BP1 overexpression promoted autophagic flux, as demonstrated by increased LC3-RFP fluorescence in vitro. Furthermore, the autophagy inhibitor 3-MA abolished the protective effects of TAX1BP1 in vivo. Interestingly, we found that TAX1BP1 increased autophagy via the activation of a non-canonical NF-κB signaling pathway. Conversely, RelB knockdown disrupted the protective effects of TAX1BP1 in cardiomyocytes. TAX1BP1 thus restores the decreased autophagy level, leading to decreased inflammatory responses and oxidative stress and reduced apoptosis in cardiomyocytes.


Asunto(s)
Autofagia , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Miocitos Cardíacos/metabolismo , Proteínas de Neoplasias/biosíntesis , Estrés Oxidativo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Técnicas de Silenciamiento del Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Miocitos Cardíacos/patología , Proteínas de Neoplasias/genética
8.
J Pharmacol Sci ; 138(1): 38-45, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30241784

RESUMEN

Icariside II (ICA II), a flavonoid derived from Epimediumbrevicormum Maxin in, has multiple biological activities in Chinese traditional medicine. Our study aimed to investigate the potential activity of ICA II against cardiac remodeling and the underlying mechanism. Mice received aorta banding (AB) or sham surgery, and then were randomly divided into ICA II or vehicle (veh) group for 6 weeks. After echocardiography and pressure-volume loop examination, hearts were harvested for histopathological analysis and molecular mechanism investigation. Additionally, neonatal rat cardiomyocytes (NRCM) were used for in vitro experiments. ICA II attenuated the systolic and diastolic cardiac dysfunction, and protected mouse heart from hypertrophy and fibrosis. The underlying mechanism might involve in the regulation of Akt, AMPKα and mTORC. In in vitro experiment, ICA II prevented phenylephrine (PE) induced NRCM hypertrophy by regulating AMPKα/mTORC pathway. This protective effect was disappeared after treatment with Compound C (CpC), an AMPKα inhibitor. Moreover, ICA II activated AMPK at baseline. ICAII was superior to resveratrol in activating AMPKα and similar to AICAR. ICA II protected against cardiac remodeling and NRCM hypertrophy by regulating AMPK/mTORC pathway. ICA II may be a candidate for the treatment of malignant cardiac remodeling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Flavonoides/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocitos Cardíacos/patología , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/genética , Animales , Cardiomegalia/prevención & control , Epimedium/química , Flavonoides/aislamiento & purificación , Hipertrofia/prevención & control , Fenilefrina/efectos adversos , Ratas Sprague-Dawley , Transducción de Señal/genética , Transducción de Señal/fisiología
9.
Phytother Res ; 32(3): 459-470, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29214686

RESUMEN

Sepsis induced myocardial dysfunction (SIMD) is a common complication and leads to an increased mortality. SIMD is closely related to inflammation and oxidative stress. Myricetin exhibits strong capacities of anti-inflammation and anti-oxidative stress, but its pharmacological effects for lipopolysaccharide (LPS) induced cardiac injury remains undefined. This study aimed to explore whether myricetin was efficient to alleviate SIMD in mice and neonatal rat cardiomyocytes injury. Mice administrated with myricetin (100 mg/kg, po, bid) or vehicle groups were challenged with LPS (10 mg/kg, ip), and cardiac functions examined by echocardiography after 12 hr LPS exposure. LPS markedly impaired mouse cardiac functions, which were significantly attenuated by myricetin administration. Myricetin significantly reduced the production of inflammatory cytokines both in serum and cardiac tissue. Myricetin could inhibit the nuclear translocation of p65, degradation of IκBα, and cellular apoptosis in vivo and in vitro. Myricetin also prevented overexpression of iNOS and reduction of oxidoreductase (SOD and GPx) activity. Besides, Myricetin treatment could attenuate production of inflammatory cytokines of peritoneal macrophages stimulated with LPS in vitro. Thus we concluded that myricetin could attenuate the LPS induced cardiac inflammation injury in vivo and in vitro. Myricetin may be a potential therapy or adjuvant therapy for SIMD.


Asunto(s)
Flavonoides/efectos adversos , Cardiopatías/etiología , Lipopolisacáridos/efectos adversos , Animales , Cardiopatías/patología , Lipopolisacáridos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Ratas
10.
Diabetologia ; 60(6): 1126-1137, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28258411

RESUMEN

AIMS/HYPOTHESIS: Oxidative stress, inflammation and cell death are closely involved in the development of diabetic cardiomyopathy (DCM). C1q/tumour necrosis factor-related protein-3 (CTRP3) has anti-inflammatory properties but its role in DCM remains largely unknown. The aims of this study were to determine whether CTRP3 could attenuate DCM and to clarify the underlying mechanisms. METHODS: Streptozotocin (STZ) was injected intraperitoneally to induce diabetes in Sprague-Dawley rats. Cardiomyocyte-specific CTRP3 overexpression was achieved using an adeno-associated virus system 12 weeks after STZ injection. RESULTS: CTRP3 expression was significantly decreased in diabetic rat hearts. Knockdown of CTRP3 in cardiomyocytes at baseline resulted in increased oxidative injury, inflammation and apoptosis in vitro. Cardiomyocyte-specific overexpression of CTRP3 decreased oxidative stress and inflammation, attenuated myocyte death and improved cardiac function in rats treated with STZ. CTRP3 significantly activated AMP-activated protein kinase α (AMPKα) and Akt (protein kinase B) in H9c2 cells. CTRP3 protected against high-glucose-induced oxidative stress, inflammation and apoptosis in vitro. AMPKα deficiency abolished the protective effects of CTRP3 in vitro and in vivo. Furthermore, we found that CTRP3 activated AMPKα via the cAMP-exchange protein directly activated by cAMP (EPAC)-mitogen-activated protein kinase kinase (MEK) pathway. CONCLUSIONS/INTERPRETATION: CTRP3 protected against DCM via activation of the AMPKα pathway. CTRP3 has therapeutic potential for the treatment of DCM.


Asunto(s)
Adipoquinas/metabolismo , Muerte Celular/fisiología , Cardiomiopatías Diabéticas/metabolismo , Inflamación/metabolismo , Estrés Oxidativo/fisiología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adipoquinas/genética , Animales , Apoptosis/genética , Apoptosis/fisiología , Muerte Celular/genética , Línea Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/genética , Inflamación/genética , Masculino , Estrés Oxidativo/genética , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
11.
Cell Physiol Biochem ; 42(4): 1313-1325, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28700997

RESUMEN

BACKGROUND/AIMS: An increase in oxidative stress has been implicated in the pathophysiology of pressure-overload induced cardiac hypertrophy. Nobiletin (NOB), extracted from the fruit peel of citrus, possesses anti-oxidative property. Our study aimed to investigate the protective role of NOB in the progression of cardiac hypertrophy in vivo and in vitro. METHODS: Mice received aortic banding (AB) operation to induce cardiac hypertrophy. Experimental groups were as follows: sham+vehicle (VEH/SH), sham+NOB (NOB/SH), AB+vehicle (VEH/AB), and AB+ NOB (NOB/AB). Animals (n = 15 per group) were treated with vehicle or NOB (50 mg/kg) for 4 weeks after disease onset. RESULTS: NOB prevented cardiac hypertrophy induced by aortic banding (AB), as assessed by the cross-sectional area of cardiomyocytes, heart weight-to-body weight ratio, gene expression of hypertrophic markers and cardiac function. In addition, NOB supplementation blunted the increased expression of NAPDH oxidase (NOX) 2 and NOX4 and mitigated endoplasmic reticulum (ER) stress and myocyte apoptosis in cardiac hypertrophy. Furthermore, NOB treatment attenuated the neonatal rat cardiomyocyte (NRCM) hypertrophic response stimulated by phenylephrine (PE) and alleviated ER stress. However, our data showed that NOB dramatically inhibited NOX2 expression but not NOX4 in vitro. Finally, we found that knockdown of NOX2 attenuated ER stress in NRCMs stimulated by PE. CONCLUSIONS: Inhibition of oxidative and ER stress by NOB in the myocardium may represent a potential therapy for cardiac hypertrophy. Moreover, there is a direct role of NOX2 in regulating ER stress stimulated by PE.


Asunto(s)
Antioxidantes/farmacología , Cardiomegalia/prevención & control , Cardiotónicos/farmacología , Flavonas/farmacología , Corazón/efectos de los fármacos , Glicoproteínas de Membrana/antagonistas & inhibidores , NADPH Oxidasas/antagonistas & inhibidores , Animales , Aorta/cirugía , Peso Corporal/efectos de los fármacos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Progresión de la Enfermedad , Esquema de Medicación , Estrés del Retículo Endoplásmico/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Corazón/fisiopatología , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenilefrina/antagonistas & inhibidores , Fenilefrina/farmacología , Cultivo Primario de Células
12.
Cell Physiol Biochem ; 44(6): 2212-2227, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29248930

RESUMEN

BACKGROUND/AIMS: Cardiac remodeling is associated with oxidative stress. Sesamin, a well-known antioxidant from sesamin seeds, have been used extensively as traditional health foods. However, there is little known about the effect of sesamin on cardiac remodeling. Therefore, the present study aimed to determine whether sesamin could protect against cardiac remodeling and to clarify potential molecular mechanisms. METHODS: The mice were subjected to either transverse aortic constriction (TAC) or sham surgery (control group). Beginning one week after surgery, the mice were oral gavage treated with sesamin (100mg·kg-1·day-1) or vehicle for 3 weeks. Cardiac hypertrophy was assessed by echocardiographic parameters, histological analyses and hypertrophic markers. RESULTS: Sesamin alleviated cardiac hypertrophy, inhibited fibrosis and attenuated the inflammatory response. The increased production of reactive oxygen species, the activation of ERK1/2-dependent nuclear factor-κB and the increased level of Smad2 phosphorylation were observed in cardiac remolding model that were treated with sesamin. Furthermore, TAC induced alteration of Sirt3 and SOD2 was normalized by sesamin treatment. Finally, a selective Sirt3 inhibitor 3-TYP blocks all the protective role of sesamin, suggesting that a Sirt3-dependent effect of sesamin on cardiac remodeling. CONCLUSION: Sesamin improves cardiac function and prevents the development of cardiac hypertrophy via Sirt3/ROS pathway. Our results suggest the protective effect of sesamin on cardiac remolding.


Asunto(s)
Antioxidantes/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Dioxoles/uso terapéutico , Lignanos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/metabolismo , Animales , Cardiomegalia/complicaciones , Cardiomegalia/metabolismo , Cardiomegalia/patología , Fibrosis , Corazón/efectos de los fármacos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
13.
Clin Sci (Lond) ; 131(18): 2319-2345, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28842527

RESUMEN

Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.


Asunto(s)
Remodelación Ventricular/fisiología , Animales , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/fisiología
14.
Mol Cell Biochem ; 428(1-2): 9-21, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28176247

RESUMEN

Apigenin is an important component of fruits and vegetables in human daily diets. Several cellular and animal models have been performed to demonstrate its anti-oxidant and anti-inflammatory bioactivities. However, the cardioprotective effects of apigenin in diabetic cardiomyopathy (DCM) remain unclear. In this study, we intended to explore the roles of apigenin in cardiac remodeling of DCM. Male C57BL/6 J mice were treated with streptozotocin (STZ, 50 mg/kg) for 5 consecutive days to induce DCM. The echocardiography and catheter-based measurements of hemodynamic parameters were performed to evaluate the cardiac function. Paraffin slices of harvested hearts were prepared for histological pathological analysis and TUNEL assay. Oxidative assay kits were used to detect Glutathione Peroxidase (GPx), Lipid Peroxidation Malondialdehyde (MDA), and Superoxide Dismutase (SOD). Western blot and real-time PCR were used for accessing the expressions of protein and mRNA. Diabetes mellitus exacerbated the cardiac dysfunction, fibrosis, and overaccumulation of 4-hydroxynonenal accompanying with down-regulation of Bcl2, GPx, and SOD, up-regulation of MDA, cleaved caspase3, and pro-apoptotic protein Bax, and contribution to the translocation of NF-κB. All these pathological changes could be effectively blunted by treatment of apigenin in vivo. Finally, H9c2 treated with high glucose or apigenin was used for further investigation of these effects in vitro; what is more, we also compared the effects between apigenin and Resveratrol in in vitro experiments. Our experiments have demonstrated that apigenin may be a potential drug for diabetic patients suffering from DCM.


Asunto(s)
Antioxidantes/administración & dosificación , Apigenina/administración & dosificación , Cardiotónicos/administración & dosificación , Cardiomiopatías Diabéticas/tratamiento farmacológico , Estreptozocina/efectos adversos , Animales , Antioxidantes/farmacología , Apigenina/farmacología , Cardiotónicos/farmacología , Línea Celular , Cardiomiopatías Diabéticas/inducido químicamente , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Resveratrol , Estilbenos/administración & dosificación , Estilbenos/farmacología
15.
Biochim Biophys Acta ; 1852(11): 2456-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26300483

RESUMEN

Vascular dysfunction, characterized by the endothelial-to-mesenchymal transition (EndMT), contributes to the development of cardiac fibrosis induced by pressure overload. Toll-like receptor (TLR)5 is a member of the TLR family that is expressed on not only immune cells but also nonimmune cells including cardiomyocytes and vascular endothelial cells. The level of TLR5 expression on endothelial cells is low under normal circumstances but is increased in response to stimuli such as pressure overload. The aim of this study was to investigate the importance of TLR5 in cardiac endothelial dysfunction during the development of cardiac fibrosis induced by pressure overload. Global TLR5-deficient mice and wild-type littermates underwent aortic banding (AB) for 8weeks to induce cardiac fibrosis, hypertrophy and dysfunction. The deficiency of TLR5 in this model exerted no basal effects but attenuated the cardiac fibrosis, hypertrophy and dysfunction induced by pressure overload. AB-induced endothelial TLR5 activation enhanced the development of cardiac fibrosis independent of cardiomyocyte hypertrophy and triggered left ventricular dysfunction. TLR5-deficient mice also exhibited ameliorated myocardial pro-inflammatory cytokine expression and macrophage infiltration and inhibited the EndMT, all of which contribute to the development of cardiac fibrosis. These findings suggest that TLR5 triggers inflammatory responses and promotes the EndMT, which may be an important mechanism underlying the promotion of cardiac fibrosis and left ventricular dysfunction during pressure overload.

16.
Clin Sci (Lond) ; 130(22): 2061-2071, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27580926

RESUMEN

OX40, which belongs to the tumour necrosis factor (TNF)-receptor family, is a costimulatory receptor that can potentiate T-cell receptor signalling on the surface of T-lymphocytes. The role of OX40 in non-immune systems, particularly the cardiovascular system, has not been defined. In the present study, we observed a noticeable increase in OX40 expression during cardiac remodelling in rodent heart. In the present study, cardiac hypertrophy was induced by aortic banding (AB) in OX40 knockout (KO) mice and wild-type (WT) mice. After 8 weeks, the OX40 KO mice showed significantly attenuated cardiac hypertrophy, fibrosis and inflammation as well as preserved cardiac function compared with the WT mice. Follow-up in vitro studies suggested that CD4+ T-lymphocyte proliferation and pro-inflammatory cytokine release were significantly decreased, whereas anti-inflammatory cytokine release was considerably increased in OX40 KO mice compared with WT mice as assessed by Cell Counting Kit-8 (CCK-8) assay and ELISA. Co-culturing neonatal rat cardiomyocytes with the activated supernatant of CD4+ T-lymphocytes from OX40 KO mice reduced the hypertrophy response. Interestingly, OX40 KO mice with reconstituted CD4+ T-lymphocytes presented deteriorated cardiac remodelling. Collectively, our data indicate that OX40 regulates cardiac remodelling via the modulation of CD4+ T-lymphocytes.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Cardiomegalia/metabolismo , Receptores OX40/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Proliferación Celular , Humanos , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Ratas , Receptores OX40/genética
17.
Mol Cell Biochem ; 409(1-2): 145-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26215454

RESUMEN

Previous study has demonstrated that oleanolic acid (OA) possessing the anti-inflammatory and anti-oxidant properties blunted high-glucose-induced diabetic cardiomyopathy and ameliorated experimental autoimmune myocarditis in mice. However, little is known about its effects on pressure overload-induced cardiac remodeling. Herein, we investigated the effect of OA on cardiac remodeling and underlying mechanism. Mice, subjected to aortic banding (AB), were randomly assigned into control group and experimental group. OA premixed in diets was administered to mice after 3 days of AB. Echocardiography and catheter-based measurements of hemodynamic parameters were performed after 8 weeks' treatment of OA. Histologic examination and molecular analyses were used to assess cardiac hypertrophy and tissue fibrosis. In addition, the inhibitory effects of OA on H9c2 cardiomyocytes and cardiac primary fibroblast responded to the stimulation of AngII were also investigated. OA ameliorated the systolic and diastolic dysfunction induced by pressure overload evidenced by echocardiography and catheter-based measurements. OA also decreased the mRNA expression of cardiac hypertrophy and fibrosis markers evidenced by RT-PCR. It has been shown in our study that pressure overload activated the phosphorylations of Akt, mTOR, p70s6k, S6, GSK3ß, and FoxO3a, and treatment of OA attenuated the phosphorylation of these proteins. In addition, hypertrophy of cardiomyocytes and fibrosis markers induced by AngII was inhibited by OA in vitro. Our findings uncover that OA suppressed AB-induced cardiac hypertrophy, partly by inhibiting the activity of Akt/mTOR pathway, and suggest that treatment of OA may have a benefit on retarding the progress of cardiac remodeling under long terms of pressure overload.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cardiomiopatías Diabéticas/patología , Hipertensión/patología , Ácido Oleanólico/farmacología , Remodelación Ventricular/efectos de los fármacos , Angiotensina II/farmacología , Animales , Glucemia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Ecocardiografía , Fibrosis/genética , Fibrosis/patología , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , ARN Mensajero/biosíntesis , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
18.
Eur J Pharmacol ; 947: 175679, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36967078

RESUMEN

PURPOSE: RIP2 is a member of the receptor-interacting protein family that has been associated with various pathophysiological processes, including immunity, apoptosis, and autophagy. However, no studies have hitherto reported the role of RIP2 in lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM). This study was designed to illustrate the role of RIP2 in LPS-induced SCM. METHODS: C57 and RIP2 knockout mice received intraperitoneal injections of LPS to establish models of SCM. Echocardiography was used to assess the cardiac function of the mice. Real-time-PCR, cytometric bead array and immunohistochemical staining were used to detect the inflammatory response. Immunoblotting was used to determine the protein expression of relevant signaling pathways. Our findings were validated by treatment with a RIP2 inhibitor. Neonatal rats cardiomyocytes (NRCMs) and cardiac fibroblasts (CFs) were transfected with Ad-RIP2 to further explore the role of RIP2 in vitro. RESULTS: RIP2 expression was upregulated in our mice models of septic cardiomyopathy and LPS-stimulated cardiomyocytes and fibroblasts. RIP2 knockout or RIP2 inhibitors attenuated LPS-induced cardiac dysfunction and reduced the inflammatory response in mice. Overexpression of RIP2 in vitro enhanced the inflammatory response, and TAK1 inhibitors attenuated the inflammatory response caused by overexpression of RIP2. CONCLUSION: Our findings substantiate that RIP2 induces an inflammatory response by regulating the TAK1/IκBα/NF-κB signaling pathway. RIP2 inhibition by genetic or pharmacological approaches has huge prospects for application as a potential treatment strategy for inhibiting inflammation, alleviating cardiac dysfunction, and improving survival.


Asunto(s)
Cardiomiopatías , Lipopolisacáridos , Ratones , Ratas , Animales , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Cardiomiopatías/inducido químicamente , Cardiomiopatías/tratamiento farmacológico , Ratones Noqueados
19.
Oxid Med Cell Longev ; 2023: 4015199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743695

RESUMEN

Objective: Cardiac remodeling has been demonstrated to be the early stage and common pathway for various types of cardiomyopathy, but no specific treatment has been suggested to prevent its development and progress. This study was aimed at assessing whether Cryptotanshinone (CTS) treatment could effectively attenuate cardiac remodeling in vivo and in vitro. Methods: Aortic banding (AB) surgery was performed to establish a pressure-overload-induced mouse cardiac remodeling model. Echocardiography and pressure-volume proof were used to examine mouse cardiac function. Hematoxylin and eosin (HE) and Picro-Sirius Red (PSR) staining were used to assess cardiac remodeling in vivo. Mouse hearts were collected to analysis signaling pathway and cardiac remodeling markers, respectively. Furthermore, neonatal rat cardiomyocyte (NRCMs) and cardiac fibroblast (CF) were isolated to investigate the roles and mechanisms of CTS treatment in vitro. Results: CTS administration significantly alleviated pressure-overload-induced mouse cardiac dysfunction, inhibited cardiac hypertrophy, and reduced cardiac fibrosis. Mechanically, CTS treatment significantly inhibited the STAT3 and TGF-ß/SMAD3 signaling pathways. In vitro experiments, CTS treatment markedly inhibited AngII-induced cardiomyocyte hypertrophy and TGF-ß-induced myofibroblast activation via inhibiting STAT3 phosphorylation and its nuclear translocation. Finally, CTS treatment could not protect against pressure overload-induced mouse cardiac remodeling after adenovirus-associated virus (AAV)9-mediated STAT3 overexpression in mouse heart. Conclusion: CTS treatment might attenuate pathological cardiac remodeling via inhibiting STAT3-dependent pathway.


Asunto(s)
Miocitos Cardíacos , Remodelación Ventricular , Ratas , Ratones , Animales , Cardiomegalia , Fibrosis , Factor de Crecimiento Transformador beta , Ratones Endogámicos C57BL
20.
Free Radic Biol Med ; 205: 275-290, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37331642

RESUMEN

Ferroptosis has been suggested to involve in doxorubicin (DOX)-induced cardiotoxicity. However, the underlying mechanisms and regulatory targets of cardiomyocyte ferroptosis remains to be understood. This study demonstrated that the up-regulation of ferroptosis associated proteins genes were accompanied with the down-regulation of AMPKα2 phosphorylation in DOX treated mouse heart or neonatal rat cardiomyocytes (NRCMs). AMPKα2 knockout (AMPKα2-/-) significantly exacerbated mouse cardiac dysfunction, increased mortality, promoting ferroptosis associated mitochondrial injuries, enhanced ferroptosis associated proteins and genes expression, and lead to accumulation of lactate dehydrogenase (LDH) and malondialdehyde (MDA) in mouse serum and hearts respectively. Ferrostatin-1 administration markedly improved cardiac function, decreased mortality, inhibited mitochondrial injuries and ferroptosis associated proteins and genes expression, and depressed accumulation of LDH and MDA in DOX treated AMPKα2-/- mouse. Moreover, Adeno-associated virus serotype 9 AMPKα2 (AAV9-AMPKα2) or AICAR treatment mediated AMPKα2 activation could significantly improve cardiac function and depress ferroptosis in mouse. AMPKα2 activation or silence could also inhibit or promote ferroptosis associated injuries in DOX treated NRCMs respecitively. Mechanistically, AMPKα2/ACC mediated lipid metabolism has been suggested to involve in regulating DOX-treatment induced ferroptosis other than mTORC1 or autophagy dependent pathway. The metabolomics analysis exhibited that AMPKα2-/- significantly enhanced accumulation of polyunsaturated fatty acids (PFAs), oxidized lipid, and phosphatidylethanolamine (PE). Finally, this study also demonstrated that metformin (MET) treatment could inhibit ferroptosis and improve cardiac function via activating AMPKα2 phosphorylation. The metabolomics analysis exhibited that MET treatment significantly depressed PFAs accumulation in DOX treated mouse hearts. Collectively, this study suggested that AMPKα2 activation might protect against anthracycline chemotherapeutic drugs mediated cardiotoxicity via inhibiting ferroptosis.


Asunto(s)
Ferroptosis , Fluorocarburos , Ratas , Ratones , Animales , Cardiotoxicidad , Ferroptosis/genética , Peroxidación de Lípido , Apoptosis , Miocitos Cardíacos/metabolismo , Doxorrubicina/toxicidad , Fluorocarburos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA