Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 214(Pt 4): 113972, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952744

RESUMEN

Efficient removal of low-concentration ammonia from chlorinated wastewater is a challenge for decentralized wastewater treatment due to its notorious environmental effect and lethal influence on aquaculture. Photoelectrocatalytic (PEC) oxidation process is considered as an efficient and environment-friendly approach, whereas a low-cost and stable photoanode is crucial. In this study, TiO2 nanotubes (TNTs) photoanode (Ar-TNT-500 °C) with excellent physicochemical and photoelectrochemical properties was prepared by optimizing the parameters of anodization, including the voltage/times of anodization and the atmosphere/temperature of heat treatment. During the synthesis, the electrochemical and heat treatment processes promoted the formation of oxygen vacancies (OV) on the TNTs surface and enhanced its electrocatalytic activity. The optimized Ar-TNT-500 °C photoanode could selectively convert ammonia to N2 (86%) and a small amount of nitrate (14%). Radical quenching and probe experiments confirmed that the ClO produced by rapid quenching of OH and Cl by free chlorine dominated the selective degradation of ammonia in the synergistic process of photocatalysis and electrocatalysis. The cycle of chlorine-based radicals (ClO and Cl) and Cl- provided a continuous and efficient ammonia oxidation system, because chlorine-based radicals could efficiently and selectively oxidize ammonia and reduce the production of toxic (per) chlorate.


Asunto(s)
Amoníaco , Nanotubos , Amoníaco/química , Cloro/química , Nanotubos/química , Titanio , Aguas Residuales
2.
Chemosphere ; 313: 137363, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36423725

RESUMEN

Photoelectrocatalytic (PEC) process combining the merits of photocatalysis and electrocatalysis is considered as a promising ammonia oxidation technology for water treatment. However, some key issues, such as the limited in situ generation of oxidants on photoanode, slow mass transfer problem and generation of nitrate/nitrite by-products hinder the further application of PEC process in the treatment of ammonia pollutant. In this study, the graphite felt (GF) cathodes modified by different transition metals (Ni, Fe, Mn, Co, Cu) were screened by physicochemical and photoelectrochemical characterizations. The results show that the Ni-GF cathode with more Ni0 uniformly distributed on the GF surface had the best electrocatalytic activity to generate H2O2. The PEC system composed of 10.0 wt% Ni-GF cathode and optimized titania nanotubes (TNTs) photoanode selectively converted about 96.1% ammonia to N2 within 90 min. Compared with the single TNTs photoanode system, the ammonia oxidation reaction rate constant of the synergistic PEC oxidation system was increased by about two times, which demonstrated the role of the oxidants simultaneously generated on both anode and cathode. The in situ generated reactive oxygen-based oxidants and chlorine-based oxidants interacted together, and ClO• acted a leading role in the ammonia oxidation which were confirmed by quenching and probe experiments. In addition, the contributions of •OH and ClO• were significantly improved in the synergistic PEC oxidation system, compared with the single TNTs photoanode system. Furthermore, the nitrate by-products generated by the ammonia oxidation were further reduced on the Ni-GF cathode. The large amount of active chlorine and active oxygen generated on the electrode diffused into the bulk, effectively overcoming the mass transfer limitation of direct oxidation. Therefore, the developed TNTs photoanode/Ni-GF cathode system can continuously and efficiently convert ammonia to N2 without the formation of nitrate/nitrite by-products.


Asunto(s)
Cloro , Grafito , Aguas Residuales , Amoníaco , Oxígeno , Peróxido de Hidrógeno , Nitratos , Nitritos , Oxidantes , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA