Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Mol Evol ; 91(1): 2-5, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36562800

RESUMEN

Models for the evolution of various phenotypes are sometimes constructed with an assumption that mutational effects will be symmetrically distributed about a static mean. This model produces a memory effect that over long evolutionary times results in an expectation that randomized sequences underlying the genetic architecture of the trait will on average retain the ancestral phenotype. This expectation is unrealistic and also inconsistent with our current understanding of processes of molecular evolution.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Mutación/genética , Fenotipo , Evolución Biológica
2.
J Mol Evol ; 91(4): 379-381, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37079045

RESUMEN

Species concepts have been defined through a number of lenses, but are almost entirely empirical in nature. Fundamentally linked to various existing species concepts, an interpretation of genomic data through a species classification filter based upon a theoretical genotype-phenotype map with a monophyly requirement is discussed.


Asunto(s)
Formación de Concepto , Genoma , Genoma/genética , Genómica , Genotipo , Fenotipo
3.
BMC Bioinformatics ; 23(1): 505, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434497

RESUMEN

BACKGROUND: Multiple processes impact the probability of retention of individual genes following whole genome duplication (WGD) events. In analyzing two consecutive whole genome duplication events that occurred in the lineage leading to Atlantic salmon, a new phylogenetic statistical analysis was developed to examine the contingency of retention in one event based upon retention in a previous event. This analysis is intended to evaluate mechanisms of duplicate gene retention and to provide software to generate the test statistic for any genome with pairs of WGDs in its history. RESULTS: Here a software package written in Python, 'WGDTree' for the analysis of duplicate gene retention following whole genome duplication events is presented. Using gene tree-species tree reconciliation to label gene duplicate nodes and differentiate between WGD and SSD duplicates, the tool calculates a statistic based upon the conditional probability of a gene duplicate being retained after a second whole genome duplication dependent upon the retention status after the first event. The package also contains methods for the simulation of gene trees with WGD events. After running simulations, the accuracy of the placement of events has been determined to be high. The conditional probability statistic has been calculated for Phalaenopsis equestris on a monocot species tree with a pair of consecutive WGD events on its lineage, showing the applicability of the method. CONCLUSIONS: A new software tool has been created for the analysis of duplicate genes in examination of retention mechanisms. The software tool has been made available on the Python package index and the source code can be found on GitHub here: https://github.com/cnickh/wgdtree .


Asunto(s)
Duplicación de Gen , Genoma , Filogenia , Programas Informáticos , Probabilidad
4.
J Mol Evol ; 90(5): 328-331, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35960316

RESUMEN

Nucleic acids likely played a foundational role in the origin of life. However, the prebiotic chemistry of nucleoside and nucleotide synthesis has proved challenging on a number of fronts. The recent discovery of both pyrimidine and purine nucleobases in carbonaceous chondrite meteorites has garnered much attention from both the popular press and the scientific community. Here, we discuss these findings in the context of nucleoside/nucleotide prebiotic chemistry. We consider that the main challenge of prebiotic nucleoside synthesis, that of nucleosidic bond formation, is not addressed by the identification nucleobases in meteorites. We further discuss issues of selection that arise from the observation that such meteorites contain both canonical and non-canonical nucleobases. In sum, we argue that, despite the major analytical achievement of identifying and characterizing nucleobases in meteorites, this observation does little to advance our understanding of the prebiotic chemistry that could have led to the first genetic molecules that gave rise to us.


Asunto(s)
Meteoroides , Ácidos Nucleicos , ADN , Nucleósidos , Nucleótidos , Purinas , Pirimidinas , ARN/química
5.
Nature ; 533(7602): 200-5, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27088604

RESUMEN

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


Asunto(s)
Diploidia , Evolución Molecular , Duplicación de Gen/genética , Genes Duplicados/genética , Genoma/genética , Salmo salar/genética , Animales , Elementos Transponibles de ADN/genética , Femenino , Genómica , Masculino , Modelos Genéticos , Mutagénesis/genética , Filogenia , Estándares de Referencia , Salmo salar/clasificación , Homología de Secuencia
6.
Mol Biol Evol ; 37(11): 3353-3362, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32895716

RESUMEN

There are known limitations in methods of detecting positive selection. Common methods do not enable differentiation between positive selection and compensatory covariation, a major limitation. Further, the traditional method of calculating the ratio of nonsynonymous to synonymous substitutions (dN/dS) does not take into account the 3D structure of biomacromolecules nor differences between amino acids. It also does not account for saturation of synonymous mutations (dS) over long evolutionary time that renders codon-based methods ineffective for older divergences. This work aims to address these shortcomings for detecting positive selection through the development of a statistical model that examines clusters of substitutions in clusters of variable radii. Additionally, it uses a parametric bootstrapping approach to differentiate positive selection from compensatory processes. A previously reported case of positive selection in the leptin protein of primates was reexamined using this methodology.


Asunto(s)
Evolución Molecular , Modelos Estadísticos , Conformación Proteica , Selección Genética , Mutación Silenciosa , Animales , Leptina/genética , Primates/genética , Programas Informáticos
7.
J Mol Evol ; 89(3): 157-164, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33486547

RESUMEN

As both a computational and an experimental endeavor, ancestral sequence reconstruction remains a timely and important technique. Modern approaches to conduct ancestral sequence reconstruction for proteins are built upon a conceptual framework from journal founder Emile Zuckerkandl. On top of this, work on maximum likelihood phylogenetics published in Journal of Molecular Evolution in 1996 was one of the first approaches for generating maximum likelihood ancestral sequences of proteins. From its computational history, future model development needs as well as potential applications in areas as diverse as computational systems biology, molecular community ecology, infectious disease therapeutics and other biomedical applications, and biotechnology are discussed. From its past in this journal, there is a bright future for ancestral sequence reconstruction in the field of evolutionary biology.


Asunto(s)
Algoritmos , Evolución Molecular , Funciones de Verosimilitud , Filogenia , Proteínas/genética
8.
J Mol Evol ; 89(8): 554-564, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341836

RESUMEN

Gene duplication is a fundamental process that has the potential to drive phenotypic differences between populations and species. While evolutionarily neutral changes have the potential to affect phenotypes, detecting selection acting on gene duplicates can uncover cases of adaptive diversification. Existing methods to detect selection on duplicates work mostly inter-specifically and are based upon selection on coding sequence changes, here we present a method to detect selection directly on a copy number variant segregating in a population. The method relies upon expected relationships between allele (new duplication) age and frequency in the population dependent upon the effective population size. Using both a haploid and a diploid population with a Moran Model under several population sizes, the neutral baseline for copy number variants is established. The ability of the method to reject neutrality for duplicates with known age (measured in pairwise dS value) and frequency in the population is established through mathematical analysis and through simulations. Power is particularly good in the diploid case and with larger effective population sizes, as expected. With extension of this method to larger population sizes, this is a tool to analyze selection on copy number variants in any natural or experimentally evolving population. We have made an R package available at https://github.com/peterbchi/CNVSelectR/ which implements the method introduced here.


Asunto(s)
Diploidia , Duplicación de Gen , Alelos , Fenotipo , Selección Genética
9.
BMC Evol Biol ; 20(1): 24, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046633

RESUMEN

BACKGROUND: Understanding the origins of genome content has long been a goal of molecular evolution and comparative genomics. By examining genome evolution through the guise of lineage-specific evolution, it is possible to make inferences about the evolutionary events that have given rise to species-specific diversification. Here we characterize the evolutionary trends found in chordate species using The Adaptive Evolution Database (TAED). TAED is a database of phylogenetically indexed gene families designed to detect episodes of directional or diversifying selection across chordates. Gene families within the database have been assessed for lineage-specific estimates of dN/dS and have been reconciled to the chordate species to identify retained duplicates. Gene families have also been mapped to the functional pathways and amino acid changes which occurred on high dN/dS lineages have been mapped to protein structures. RESULTS: An analysis of this exhaustive database has enabled a characterization of the processes of lineage-specific diversification in chordates. A pathway level enrichment analysis of TAED determined that pathways most commonly found to have elevated rates of evolution included those involved in metabolism, immunity, and cell signaling. An analysis of protein fold presence on proteins, after normalizing for frequency in the database, found common folds such as Rossmann folds, Jelly Roll folds, and TIM barrels were overrepresented on proteins most likely to undergo directional selection. A set of gene families which experience increased numbers of duplications within short evolutionary times are associated with pathways involved in metabolism, olfactory reception, and signaling. An analysis of protein secondary structure indicated more relaxed constraint in ß-sheets and stronger constraint on alpha Helices, amidst a general preference for substitutions at exposed sites. Lastly a detailed analysis of the ornithine decarboxylase gene family, a key enzyme in the pathway for polyamine synthesis, revealed lineage-specific evolution along the lineage leading to Cetacea through rapid sequence evolution in a duplicate gene with amino acid substitutions causing active site rearrangement. CONCLUSION: Episodes of lineage-specific evolution are frequent throughout chordate species. Both duplication and directional selection have played large roles in the evolution of the phylum. TAED is a powerful tool for facilitating this understanding of lineage-specific evolution.


Asunto(s)
Cordados/clasificación , Cordados/genética , Evolución Molecular , Especiación Genética , Variación Genética/fisiología , Animales , Evolución Biológica , Cetáceos/clasificación , Cetáceos/genética , Duplicación de Gen/fisiología , Genes Duplicados , Genoma , Genómica , Filogenia
10.
J Mol Evol ; 88(5): 415-417, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32385626

RESUMEN

Evolved proteins observed in natural organisms are found to be only marginally stable. Several mechanistic hypotheses have been presented to date to explain this observation. One idea that has been put forward is that active selection prevents proteins from becoming too stable to enable proper function. A second idea is that marginal stability reflects the point of mutation-selection-drift balance, where it is mutational pressure that generates marginal stability. A third idea explored in this issue of Journal of Molecular Evolution is that a physical limit prevents the evolution of more stable proteins rather than an evolutionary process. While the first two notions are based upon specific evolutionary processes, discussion here is aimed at reconciling evolutionary processes with the physics of protein folding, drawing upon the ideas that have been presented.


Asunto(s)
Evolución Molecular , Pliegue de Proteína , Proteínas , Mutación , Proteínas/genética
11.
J Mol Evol ; 88(3): 211-226, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32060574

RESUMEN

A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.


Asunto(s)
Evolución Molecular , Origen de la Vida , ARN/genética , Ecología , Genética de Población , Genoma , Publicaciones Periódicas como Asunto , Proteínas/genética , Selección Genética
12.
J Mol Evol ; 92(1): 1-2, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38231224
13.
BMC Evol Biol ; 18(1): 17, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422024

RESUMEN

That population size affects the fate of new mutations arising in genomes, modulating both how frequently they arise and how efficiently natural selection is able to filter them, is well established. It is therefore clear that these distinct roles for population size that characterize different processes should affect the evolution of proteins and need to be carefully defined. Empirical evidence is consistent with a role for demography in influencing protein evolution, supporting the idea that functional constraints alone do not determine the composition of coding sequences.Given that the relationship between population size, mutant fitness and fixation probability has been well characterized, estimating fitness from observed substitutions is well within reach with well-formulated models. Molecular evolution research has, therefore, increasingly begun to leverage concepts from population genetics to quantify the selective effects associated with different classes of mutation. However, in order for this type of analysis to provide meaningful information about the intra- and inter-specific evolution of coding sequences, a clear definition of concepts of population size, what they influence, and how they are best parameterized is essential.Here, we present an overview of the many distinct concepts that "population size" and "effective population size" may refer to, what they represent for studying proteins, and how this knowledge can be harnessed to produce better specified models of protein evolution.


Asunto(s)
Evolución Molecular , Densidad de Población , Proteínas/genética , Genética de Población , Mutación/genética , Selección Genética
14.
Proteins ; 86(2): 218-228, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29178386

RESUMEN

Improvements in the description of amino acid substitution are required to develop better pseudo-energy-based protein structure-aware models for use in phylogenetic studies. These models are used to characterize the probabilities of amino acid substitution and enable better simulation of protein sequences over a phylogeny. A better characterization of amino acid substitution probabilities in turn enables numerous downstream applications, like detecting positive selection, ancestral sequence reconstruction, and evolutionarily-motivated protein engineering. Many existing Markov models for amino acid substitution in molecular evolution disregard molecular structure and describe the amino acid substitution process over longer evolutionary periods poorly. Here, we present a new model upgraded with a site-specific parameterization of pseudo-energy terms in a coarse-grained force field, which describes local heterogeneity in physical constraints on amino acid substitution better than a previous pseudo-energy-based model with minimum cost in runtime. The importance of each weight term parameterization in characterizing underlying features of the site, including contact number, solvent accessibility, and secondary structural elements was evaluated, returning both expected and biologically reasonable relationships between model parameters. This results in the acceptance of proposed amino acid substitutions that more closely resemble those observed site-specific frequencies in gene family alignments. The modular site-specific pseudo-energy function is made available for download through the following website: https://liberles.cst.temple.edu/Software/CASS/index.html.


Asunto(s)
Sustitución de Aminoácidos , Evolución Molecular , Modelos Genéticos , Proteínas/genética , Algoritmos , Secuencia de Aminoácidos , Animales , Humanos , Conformación Proteica , Proteínas/química , Termodinámica , Dominios Homologos src
16.
Syst Biol ; 66(6): 1054-1064, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28057858

RESUMEN

The computational reconstruction of ancestral proteins provides information on past biological events and has practical implications for biomedicine and biotechnology. Currently available tools for ancestral sequence reconstruction (ASR) are often based on empirical amino acid substitution models that assume that all sites evolve at the same rate and under the same process. However, this assumption is frequently violated because protein evolution is highly heterogeneous due to different selective constraints among sites. Here, we present ProtASR, a new evolutionary framework to infer ancestral protein sequences accounting for selection on protein stability. First, ProtASR generates site-specific substitution matrices through the structurally constrained mean-field (MF) substitution model, which considers both unfolding and misfolding stability. We previously showed that MF models outperform empirical amino acid substitution models, as well as other structurally constrained substitution models, both in terms of likelihood and correctly inferring amino acid distributions across sites. In the second step, ProtASR adapts a well-established maximum-likelihood (ML) ASR procedure to infer ancestral proteins under MF models. A known bias of ML ASR methods is that they tend to overestimate the stability of ancestral proteins by underestimating the frequency of deleterious mutations. We compared ProtASR under MF to two empirical substitution models (JTT and CAT), reconstructing the ancestral sequences of simulated proteins. ProtASR yields reconstructed proteins with less biased stabilities, which are significantly closer to those of the simulated proteins. Analysis of extant protein families suggests that folding stability evolves through time across protein families, potentially reflecting neutral fluctuation. Some families exhibit a more constant protein folding stability, while others are more variable. ProtASR is freely available from https://github.com/miguelarenas/protasr and includes detailed documentation and ready-to-use examples. It runs in seconds/minutes depending on protein length and alignment size. [Ancestral sequence reconstruction; folding stability; molecular adaptation; phylogenetics; protein evolution; protein structure.].


Asunto(s)
Algoritmos , Clasificación/métodos , Modelos Biológicos , Filogenia , Análisis de Secuencia de Proteína , Sustitución de Aminoácidos , ADN Antiguo/química , Evolución Molecular , Pliegue de Proteína , Estabilidad Proteica , Programas Informáticos
17.
BMC Evol Biol ; 17(1): 117, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28545395

RESUMEN

BACKGROUND: Understanding the genotype-phenotype map is fundamental to our understanding of genomes. Genes do not function independently, but rather as part of networks or pathways. In the case of metabolic pathways, flux through the pathway is an important next layer of biological organization up from the individual gene or protein. Flux control in metabolic pathways, reflecting the importance of mutation to individual enzyme genes, may be evolutionarily variable due to the role of mutation-selection-drift balance. The evolutionary stability of rate limiting steps and the patterns of inter-molecular co-evolution were evaluated in a simulated pathway with a system out of equilibrium due to fluctuating selection, population size, or positive directional selection, to contrast with those under stabilizing selection. RESULTS: Depending upon the underlying population genetic regime, fluctuating population size was found to increase the evolutionary stability of rate limiting steps in some scenarios. This result was linked to patterns of local adaptation of the population. Further, during positive directional selection, as with more complex mutational scenarios, an increase in the observation of inter-molecular co-evolution was observed. CONCLUSIONS: Differences in patterns of evolution when systems are in and out of equilibrium, including during positive directional selection may lead to predictable differences in observed patterns for divergent evolutionary scenarios. In particular, this result might be harnessed to detect differences between compensatory processes and directional processes at the pathway level based upon evolutionary observations in individual proteins. Detecting functional shifts in pathways reflects an important milestone in predicting when changes in genotypes result in changes in phenotypes.


Asunto(s)
Evolución Biológica , Genética de Población , Redes y Vías Metabólicas , Modelos Biológicos , Adaptación Fisiológica , Mutación , Densidad de Población , Selección Genética
18.
BMC Evol Biol ; 17(1): 38, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28143390

RESUMEN

BACKGROUND: Gene duplication has been identified as a key process driving functional change in many genomes. Several biological models exist for the evolution of a pair of duplicates after a duplication event, and it is believed that gene duplicates can evolve in different ways, according to one process, or a mix of processes. Subfunctionalization is one such process, under which the two duplicates can be preserved by dividing up the function of the original gene between them. Analysis of genomic data using subfunctionalization and related processes has thus far been relatively coarse-grained, with mathematical treatments usually focusing on the phenomenological features of gene duplicate evolution. RESULTS: Here, we develop and analyze a mathematical model using the mechanics of subfunctionalization and the assumption of Poisson rates of mutation. By making use of the results from the literature on the Phase-Type distribution, we are able to derive exact analytical results for the model. The main advantage of the mechanistic model is that it leads to testable predictions of the phenomenological behavior (instead of building this behavior into the model a priori), and allows for the estimation of biologically meaningful parameters. We fit the survival function implied by this model to real genome data (Homo sapiens, Mus musculus, Rattus norvegicus and Canis familiaris), and compare the fit against commonly used phenomenological survival functions. We estimate the number of regulatory regions, and rates of mutation (relative to silent site mutation) in the coding and regulatory regions. We find that for the four genomes tested the subfunctionalization model predicts that duplicates most-likely have just a few regulatory regions, and the rate of mutation in the coding region is around 5-10 times greater than the rate in the regulatory regions. This is the first model-based estimate of the number of regulatory regions in duplicates. CONCLUSIONS: Strong agreement between empirical results and the predictions of our model suggest that subfunctionalization provides a consistent explanation for the evolution of many gene duplicates.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genes Reguladores/genética , Modelos Genéticos , Mutación , Animales , Evolución Biológica , Genes Duplicados , Genoma , Cadenas de Markov
19.
J Mol Evol ; 85(1-2): 46-56, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28795237

RESUMEN

With the large collections of gene and genome sequences, there is a need to generate curated comparative genomic databases that enable interpretation of results in an evolutionary context. Such resources can facilitate an understanding of the co-evolution of genes in the context of a genome mapped onto a phylogeny, of a protein structure, and of interactions within a pathway. A phylogenetically indexed gene family database, the adaptive evolution database (TAED), is presented that organizes gene families and their evolutionary histories in a species tree context. Gene families include alignments, phylogenetic trees, lineage-specific dN/dS ratios, reconciliation with the species tree to enable both the mapping and the identification of duplication events, mapping of gene families onto pathways, and mapping of amino acid substitutions onto protein structures. In addition to organization of the data, new phylogenetic visualization tools have been developed to aid in interpreting the data that are also available, including TreeThrasher and TAED Tree Viewer. A new resource of gene families organized by species and taxonomic lineage promises to be a valuable comparative genomics database for molecular biologists, evolutionary biologists, and ecologists. The new visualization tools and database framework will be of interest to both evolutionary biologists and bioinformaticians.


Asunto(s)
Cordados/genética , Bases de Datos Genéticas , Evolución Molecular , Genómica/métodos , Familia de Multigenes , Animales , Filogenia , Análisis de Secuencia de ADN/métodos , Programas Informáticos
20.
Genet Epidemiol ; 39(1): 11-19, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25371374

RESUMEN

Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled "Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases" at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to (1) identify opportunities, challenges, and resource needs for the development and application of genetic simulation models; (2) improve the integration of tools for modeling and analysis of simulated data; and (3) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting, the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation.


Asunto(s)
Simulación por Computador , Enfermedad/genética , Modelos Genéticos , Programas Informáticos , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Epidemiología Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA