Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Physiol ; 598(4): 755-772, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31788800

RESUMEN

KEY POINTS: Protein ingestion and cooling are strategies employed by athletes to improve postexercise recovery and, as such, to facilitate muscle conditioning. However, whether cooling affects postprandial protein handling and subsequent muscle protein synthesis rates during recovery from exercise has not been assessed. We investigated the effect of postexercise cooling on the incorporation of dietary protein-derived amino acids into muscle protein and acute postprandial (hourly) as well as prolonged (daily) myofibrillar protein synthesis rates during recovery from resistance-type exercise over 2 weeks. Cold-water immersion during recovery from resistance-type exercise lowers the capacity of the muscle to take up and/or direct dietary protein-derived amino acids towards de novo myofibrillar protein accretion. In addition, cold-water immersion during recovery from resistance-type exercise lowers myofibrillar protein synthesis rates during prolonged resistance-type exercise training. Individuals aiming to improve skeletal muscle conditioning should reconsider applying cooling as a part of their postexercise recovery strategy. ABSTRACT: We measured the impact of postexercise cooling on acute postprandial (hourly) as well as prolonged (daily) myofibrillar protein synthesis rates during adaptation to resistance-type exercise over 2 weeks. Twelve healthy males (aged 21 ± 2 years) performed a single resistance-type exercise session followed by water immersion of both legs for 20 min. One leg was immersed in cold water (8°C: CWI), whereas the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g of intrinsically (l-[1-13 C]-phenylalanine and l-[1-13 C]-leucine) labelled milk protein with 45 g of carbohydrates. In addition, primed continuous l-[ring-2 H5 ]-phenylalanine and l-[1-13 C]-leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5 h recovery period. In addition, deuterated water (2 H2 O) was applied with the collection of saliva, blood and muscle biopsies over 2 weeks to assess the effects of postexercise cooling with protein intake on myofibrillar protein synthesis rates during more prolonged resistance-type exercise training (thereby reflecting short-term training adaptation). Incorporation of dietary protein-derived l-[1-13 C]-phenylalanine into myofibrillar protein was significantly lower in CWI compared to CON (0.016 ± 0.006 vs. 0.021 ± 0.007 MPE; P = 0.016). Postexercise myofibrillar protein synthesis rates were lower in CWI compared to CON based upon l-[1-13 C]-leucine (0.058 ± 0.011 vs. 0.072 ± 0.017% h-1 , respectively; P = 0.024) and l-[ring-2 H5 ]-phenylalanine (0.042 ± 0.009 vs. 0.053 ± 0.013% h-1 , respectively; P = 0.025). Daily myofibrillar protein synthesis rates assessed over 2 weeks were significantly lower in CWI compared to CON (1.48 ± 0.17 vs. 1.67 ± 0.36% day-1 , respectively; P = 0.042). Cold-water immersion during recovery from resistance-type exercise reduces myofibrillar protein synthesis rates and, as such, probably impairs muscle conditioning.


Asunto(s)
Frío , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Atletas , Proteínas en la Dieta , Humanos , Inmersión , Pierna , Masculino , Adulto Joven
2.
Nat Commun ; 12(1): 1516, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750795

RESUMEN

Mild cold acclimation for 10 days has been previously shown to markedly improve insulin sensitivity in patients with type 2 diabetes. Here we show in a single-arm intervention study (Trialregister.nl ID: NL4469/NTR5711) in nine patients with type 2 diabetes that ten days of mild cold acclimation (16-17 °C) in which observable, overt shivering was prevented, does not result in improved insulin sensitivity, postprandial glucose and lipid metabolism or intrahepatic lipid content and only results in mild effects on overnight fasted fat oxidation, postprandial energy expenditure and aortic augmentation index. The lack of marked metabolic effects in this study is associated with a lack of self-reported shivering and a lack of upregulation of gene expression of muscle activation or muscle contraction pathways in skeletal muscle and suggests that some form of muscle contraction is needed for beneficial effects of mild cold acclimation.


Asunto(s)
Aclimatación/fisiología , Regulación de la Temperatura Corporal/fisiología , Frío , Diabetes Mellitus Tipo 2/metabolismo , Anciano , Ayuno , Femenino , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Cinética , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Músculo Esquelético , Oxidación-Reducción
3.
Sports Med ; 37(8): 669-82, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17645370

RESUMEN

As a result of the inefficiency of metabolic transfer, >75% of the energy that is generated by skeletal muscle substrate oxidation is liberated as heat. During exercise, several powerful physiological mechanisms of heat loss are activated to prevent an excessive rise in body core temperature. However, a hot and humid environment can significantly add to the challenge that physical exercise imposes on the human thermoregulatory system, as heat exchange between body and environment is substantially impaired under these conditions. This can lead to serious performance decrements and an increased risk of developing heat illness. Fortunately, there are a number of strategies that athletes can use to prevent and/or reduce the dangers that are associated with exercise in the heat. In this regard, heat acclimatisation and nutritional intervention seem to be most effective. During heat acclimatisation, the temperature thresholds for both cutaneous vasodilation and the onset of sweating are lowered, which, in combination with plasma volume expansion, improve cardiovascular stability. Effective nutritional interventions include the optimisation of hydration status by the use of fluid replacement beverages. The latter should contain moderate amounts of glucose and sodium, which improve both water absorption and retention.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Trastornos de Estrés por Calor/prevención & control , Músculo Esquelético/fisiología , Equilibrio Hidroelectrolítico/fisiología , Aclimatación/fisiología , Deshidratación/fisiopatología , Deshidratación/prevención & control , Trastornos de Estrés por Calor/fisiopatología , Calor/efectos adversos , Humanos , Vasodilatación/fisiología
4.
Front Biosci (Schol Ed) ; 2(3): 939-68, 2010 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-20515835

RESUMEN

Various and disparate technical disciplines have identified a growing need for tools to predict human thermal and thermoregulatory responses to environmental heating and cooling and other thermal challenges such as anesthesia and non-ionizing radiation. In this contribution, a dynamic simulation model is presented and used to predict human thermophysiological and perceptual responses for different applications and situations. The multi-segmental, multi-layered mathematical model predicts body temperatures, thermoregulatory responses, and components of the environmental heat exchange in cold, moderate, as well as hot stress conditions. The incorporated comfort model uses physiological states of the human body to predict thermal sensation responses to steady state and transient conditions. Different validation studies involving climate-chamber physiological and thermal comfort experiments, exposures to uncontrolled outdoor weather conditions, extreme climatic and radiation asymmetry scenarios revealed the model to predict physiological and perceptual responses typically within the standard deviation of the experimental observations. Applications of the model in biometeorology, clothing research, the car industry, clinical and safety applications are presented and discussed.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Modelos Biológicos , Automóviles , Temperatura Corporal/fisiología , Clima , Vestuario , Frío/efectos adversos , Simulación por Computador , Retroalimentación Fisiológica , Calor/efectos adversos , Humanos , Maniquíes , Meteorología , Análisis de Regresión , Sensación/fisiología , Tiritona/fisiología , Piel/irrigación sanguínea , Temperatura Cutánea/fisiología , Programas Informáticos , Sudoración/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA