Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Molecules ; 28(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838750

RESUMEN

The increasing interest in stretchable conductive composite materials, that can be versatile and suitable for wide-ranging application, has sparked a growing demand for studies of scalable fabrication techniques and specifically tailored geometries. Thanks to the combination of the conductivity and robustness of carbon nanotube (CNT) materials with the viscoelastic properties of polymer films, in particular their stretchability, "surface composites" made of a CNT on polymeric films are a promising way to obtain a low-cost, conductive, elastic, moldable, and patternable material. The use of polymers selected for specific applications, however, requires targeted studies to deeply understand the interface interactions between a CNT and the surface of such polymer films, and in particular the stability and durability of a CNT grafting onto the polymer itself. Here, we present an investigation of the interface properties for a selected group of polymer film substrates with different viscoelastic properties by means of a series of different and complementary experimental techniques. Specifically, we studied the interaction of a single-wall carbon nanotube (SWCNT) deposited on two couples of different polymeric substrates, each one chosen as representative of thermoplastic polymers (i.e., low-density polyethylene (LDPE) and polypropylene (PP)) and thermosetting elastomers (i.e., polyisoprene (PI) and polydimethylsiloxane (PDMS)), respectively. Our results demonstrate that the characteristics of the interface significantly differ for the two classes of polymers with a deeper penetration (up to about 100 µm) into the polymer bulk for the thermosetting substrates. Consequently, the resistance per unit length varies in different ranges, from 1-10 kΩ/cm for typical thermoplastic composite devices (30 µm thick and 2 mm wide) to 0.5-3 MΩ/cm for typical thermosetting elastomer devices (150 µm thick and 2 mm wide). For these reasons, the composites show the different mechanical and electrical responses, therefore suggesting different areas of application of the devices based on such materials.


Asunto(s)
Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Polímeros/química , Nanotubos de Carbono/química , Elastómeros/química , Transductores
2.
Nano Lett ; 15(4): 2343-9, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25789878

RESUMEN

Yttrium-doped barium zirconate (BZY) thin films recently showed surprising electric transport properties. Experimental investigations conducted mainly by electrochemical impedance spectroscopy suggested that a consistent part of this BZY conductivity is of protonic nature. These results have stimulated further investigations by local unconventional techniques. Here, we use electrochemical strain microscopy (ESM) to detect electrochemical activity in BZY films with nanoscale resolution. ESM in a novel cross-sectional measuring setup allows the direct visualization of the interfacial activity. The local electrochemical investigation is compared with the structural studies performed by state of art scanning transmission electron microscopy (STEM). The ESM and STEM results show a clear correlation between the conductivity and the interface structural defects. We propose a physical model based on a misfit dislocation network that introduces a novel 2D transport phenomenon, whose fingerprint is the low activation energy measured.

3.
Inorg Chem ; 53(8): 4215-27, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24697623

RESUMEN

The phenyl-iron complex of 5,10,15-tritolylcorrole was prepared by reaction of the starting chloro-iron complex with phenylmagnesium bromide in dichloromethane. The organometallic complex was fully characterized by a combination of spectroscopic methods, X-ray crystallography, and density functional theory (DFT) calculations. All of these techniques support the description of the electronic structure of this phenyl-iron derivative as a low-spin iron(IV) coordinated to a closed-shell corrolate trianion and to a phenyl monoanion. Complete assignments of the (1)H and (13)C NMR spectra of the phenyl-iron derivative and the starting chloro-iron complex were performed on the basis of the NMR spectra of the regioselectively ß-substituted bromo derivatives and the DFT calculations.


Asunto(s)
Derivados del Benceno/química , Compuestos Ferrosos/síntesis química , Hierro/química , Porfirinas/química , Cristalografía por Rayos X , Compuestos Ferrosos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Teoría Cuántica
4.
Nanotechnology ; 25(7): 075701, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24451184

RESUMEN

Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing.

5.
Angle Orthod ; 94(3): 336-345, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417457

RESUMEN

OBJECTIVES: To evaluate wear and friction properties of oscillating strips in order to validate the importance of a standardized interproximal enamel reduction (IPR) sequence to preserve their efficiency and lifetime. MATERIALS AND METHODS: Fifteen complete oscillating IPR sequences were tested by means of tribological tests (Linear Reciprocating Tribometer, C.S.M. Instruments, Peseaux, Switzerland). Fifteen single 0.2-mm metallic strips underwent a long continuous cycle of 240 minutes. Strip surface roughness and waviness measurements were assessed by means of a contact probe surface profiler (TalySurf CLI 2000; Taylor Hobson, Leicester, UK) and TayMap software. Statistical analysis was performed with independent-samples t-test. Significance was at the P < .05 level. Scanning electronic microscopy analysis of strip surfaces was conducted with an FEI Quanta 200 (Hillsboro, Ore) in high vacuum at 30.00 kV. RESULTS: Resin strips revealed a significant reduction in surface roughness (Ra, Rt, RDq) and a significant increase in waviness parameters (Wa, Wt). Rt and RDq values significantly decreased upon use of the metallic strips. Significantly higher values of Wa (+ 2.84 µm) and Wt (+0.1 µm) were observed only for the 0.2-mm metallic strips. Higher friction values were observed when the metallic strips were tested singularly rather than within the entire sequence. Lower Ra and Rt values were revealed when 0.2-mm metallic strips were tested up to 240 minutes. CONCLUSIONS: The application of a standardized oscillating sequence allows for more efficient wear performance of the strips with a significant impact on their abrasive power and lifetime.


Asunto(s)
Esmalte Dental , Electrónica , Fricción , Propiedades de Superficie , Microscopía Electrónica de Rastreo , Ensayo de Materiales
6.
RSC Adv ; 14(27): 19041-19053, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38895523

RESUMEN

The ongoing revolution in the plastic sector is the use of renewable and compostable materials obtained from biomass. However, their mechanical strength and thermal stability are generally not sufficient for practical applications. This study investigates the influence of natural additives on the physical-mechanical properties of a new biobased compostable bioplastic, SP-Milk®, produced from milk scraps. To provide this matrix the appropriate mechanical and thermal properties for daily use while leaving its compostability unchanged, the effect of incorporating vegetal fibres and organic particulates into the bulk bioplastic was investigated. Mechanical tests showed that fibres with a length of 2 mm are capable of increasing ductility by up to 97% compared with the original matrix, whereas fibres with a length of 10 mm led to a more effective reinforcement due to the residual resistance effect, increasing the final compressive strain from 20% (original matrix) to 70.9%. The addition of particulate yielded a harder and more resistant material, and the elastic modulus increased by 21%, although with loss of ductility, compared to SP-Milk® alone. The combination of fibres and particles resulted in the preservation of the positive effects of both components, showing a higher elastic modulus (240 ± 20 MPa, compared to 199 ± 12 MPa for the matrix), higher ductility (+50%) and higher strain at failure (+30%), compared with the matrix. Excellent compatibility between the polymeric matrix and both the fibres and the granules was confirmed using scanning electron microscopy. The thermal analysis demonstrated improved thermal stability particularly because of the effect of the combination of granules and fibres. The results validate that natural reinforcement agents are effective and ecologically advantageous.

7.
Chemphyschem ; 14(16): 3814-21, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24106005

RESUMEN

Nafion- and sulfonated polysulfone (SPS)- based composite membranes were prepared by incorporation of SnO2 nanoparticles in a wide range of loading (0${ \div }$35 wt. %). The composites were investigated by differential scanning calorimetry, dynamic vapor sorption and electrochemical impedance spectroscopy to study the filler effect on water sorption, water mobility, and proton conductivity. A detrimental effect of the filler was observed on water mobility and proton conductivity of Nafion-based membranes. An increase in water mobility and proton conductivity was instead observed in SPS-based samples, particularly at low hydration degree. Analysis of the water sorption isotherms and states of water revealed that the presence of SnO2 in SPS enhances interconnectivity of hydrophilic domains, while not affecting the Nafion microstructure. These results enable the design of suitable electrolyte materials that operate in proton exchange membrane fuel cell conditions.

8.
Prog Orthod ; 24(1): 9, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36907908

RESUMEN

BACKGROUND: To evaluate by means of profilometric analysis and scanning electronic microscope (SEM) the effects on enamel surfaces of oscillating mechanical systems for interproximal enamel reduction (IPR). Fifteen complete (Group 1) oscillating IPR sequence and 15 single metallic strips (Group 2) for active IPR phase of 0.2 mm were selected and tested on 30 freshly extracted teeth by means of tribological tests with alternative dry-sliding motion (Linear Reciprocating Tribometer, C.S.M. Instruments, Peseaux, Switzerland). Enamel surface roughness and waviness measurements were assessed by contact probe surface profiler (TalySurf CLI 2000; Taylor Hobson, Leicester, UK) and a TayMap software for the 3D analysis. Statistical analysis was performed with independent samples t-test. Significance was established at the P < .05 level. SEM analysis of enamel surfaces was conducted with a FEI Quanta 200 (Hillsboro, USA) in high vacuum at 30.00 kV. Images were acquired at 30X, 100X, and 300X of magnification. RESULTS: Teeth undergone Group 1 showed lower values of surface roughness (Ra - 0.34 µm, Rt - 1.55 µm) and significant increase of waviness parameters (Wa 0.25 µm, Wt 4.02 µm) when compared with those treated with Group 2. SEM evaluation showed smoothers and more regular surfaces when IPR was performed by complete IPR sequence. Single metallic strip determined more irregular surfaces characterized by extended grooves, alternated with enamel ridges and irregular fragments. CONCLUSION: The adoption of a standardized oscillating IPR sequence determines more regular and harmonious enamel surfaces at the end of the procedure. An adequate polishing after IPR plays a crucial role to guarantee a good long-term prognosis and a good respect of biological structures.


Asunto(s)
Esmalte Dental , Diente , Humanos , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Extracción Dental
9.
Nat Mater ; 9(10): 846-52, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20852619

RESUMEN

Reducing the operating temperature in the 500-750 °C range is needed for widespread use of solid oxide fuel cells (SOFCs). Proton-conducting oxides are gaining wide interest as electrolyte materials for this aim. We report the fabrication of BaZr(0.8)Y(0.2)O(3-δ) (BZY) proton-conducting electrolyte thin films by pulsed laser deposition on different single-crystalline substrates. Highly textured, epitaxially oriented BZY films were obtained on (100)-oriented MgO substrates, showing the largest proton conductivity ever reported for BZY samples, being 0.11 S cm(-1) at 500 °C. The excellent crystalline quality of BZY films allowed for the first time the experimental measurement of the large BZY bulk conductivity above 300 °C, expected in the absence of blocking grain boundaries. The measured proton conductivity is also significantly larger than the conductivity values of oxygen-ion conductors in the same temperature range, opening new potential for the development of miniaturized SOFCs for portable power supply.

10.
Antioxidants (Basel) ; 10(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922163

RESUMEN

Extra virgin olive oil (EVOO) is defined as a functional food as it contains numerous phenolic components with well-recognized health-beneficial properties, such as high antioxidant and anti-inflammatory capacity. These characteristics depend on their structural/conformational behavior, which is largely determined by intra- and intermolecular H-bond interactions. While the vibrational dynamics of isolated compounds have been studied in a number of recent investigations, their signal in a real-life sample of EVOO is overwhelmed by the major constituent acids. Here, we provide a full characterization of the vibrational spectroscopic signal from commercially available EVOO samples using Inelastic Neutron Scattering (INS) and Raman spectroscopies. The spectra are dominated by CH2 vibrations, especially at about 750 cm-1 and 1300 cm-1. By comparison with the spectra from hydroxytyrosol and other minor phenolic compounds, we show that the best regions in which to look for the structure-activity information related to the minor polar compounds is at 675 and 1200 cm-1 for hydroxytyrosol, and around 450 cm-1 for all minor polar compounds used as reference, especially if a selectively deuterated sample is available. The regional origin of the EVOO samples investigated appears to be related to the different amount of phenolic esters versus acids as reflected by the relative intensities of the peaks at 1655 and 1747 cm-1.

11.
Small ; 6(4): 528-36, 2010 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-20108242

RESUMEN

The compressive plastic strength of nanosized single-crystal metallic pillars is known to depend on their diameter D. Herein, the role of pillar height h is analyzed instead, and the suppression of the generalized crystal plasticity below a critical value h(CR) is observed. Novel in situ compression tests on regular pillars as well as nanobuttons, that is, pillars with h < h(CR), show that the latter are much harder, withstanding stresses >2 GPa. A statistical model that holds for both pillars and buttons is formulated. Owing to their superhard nature, the nanobuttons examined here underline with unprecedented resolution the extrinsic effects-often overlooked-that naturally arise during testing when the Saint-Venant assumption ceases to be accurate. The bias related to such effects is identified in the test data and removed when possible. Finally, continuous hardening is observed to occur under increasing stress level, in analogy to reports on nanoparticles. From a metrological standpoint the results expose some difficulties in nanoscale testing related to current methodology and technology. The implications of the analysis of extrinsic effects go beyond nanobuttons and extend to nano-/microelectromechanical system design and nanomechanics in general.


Asunto(s)
Nanoestructuras/química , Fuerza Compresiva , Cristalización , Elasticidad , Dureza , Ensayo de Materiales , Nanoestructuras/ultraestructura , Dinámicas no Lineales , Tamaño de la Partícula , Soluciones
12.
Int J Artif Organs ; 33(2): 76-85, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20306434

RESUMEN

Electrospinning of biopolymeric scaffolds is a new and effective approach for creating replacement tissues to repair defects and/or damaged tissues with direct clinical application. However, many hurdles and technical concerns regarding biological issues, such as cell retention and the ability to grow, still need to be overcome to gain full access to the clinical arena. Interaction with the host human tissues, immunogenicity, pathogen transmission as well as production costs, technical expertise, and good manufacturing and laboratory practice requirements call for careful consideration when aiming at the production of a material that is available off-the-shelf, to be used immediately in operative settings. The issue of sterilization is one of the most important steps for the clinical application of these scaffolds. Nevertheless, relatively few studies have been performed to systematically investigate how sterilization treatments may affect the properties of electrospun polymers for tissue engineering. This paper presents the results of a comparative study of different sterilization techniques applied to an electrospun poly-L-lactide scaffold: soaking in absolute ethanol, dry oven and autoclave treatments, UV irradiation, and hydrogen peroxide gas plasma treatment. Morphological and chemical characterization was coupled with microbiological sterility assay to validate the examined sterilization techniques in terms of effectiveness and modifications to the scaffold. The results of this study reveal that UV irradiation and hydrogen peroxide gas plasma are the most effective sterilization techniques, as they ensure sterility of the electrospun scaffolds without affecting their chemical and morphological features.


Asunto(s)
Implantes Absorbibles/normas , Poliésteres/normas , Andamios del Tejido , Etanol , Calor , Humanos , Peróxido de Hidrógeno , Poliésteres/química , Espectroscopía Infrarroja por Transformada de Fourier , Esterilización/instrumentación , Esterilización/métodos , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/normas , Andamios del Tejido/normas , Rayos Ultravioleta
13.
J Phys Chem B ; 113(21): 7505-12, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19419139

RESUMEN

Sulfonated poly(ether ether ketone) (SPEEK) membranes were thermally treated at temperatures between 120 and 160 degrees C. Water uptake measured at different relative humidity values or by full immersion in water between 25 and 145 degrees C was found to depend very strongly on previous thermal treatment and casting solvent. Water-uptake coefficient values as low as 10-15 even upon immersion in water at 100 degrees C were obtained with membranes treated at 160 degrees C. This effect is related to cross-linking by SO2 bridges between macromolecular chains. An important role is also played by the casting solvent: among the investigated solvents, dimethylsulfoxide (DMSO) gave the best results. A chemical kinetics model is outlined that permits the estimation of the relevant kinetic parameters, especially the activation energy of the cross-linking reaction, which was found to be about 60 kJ/mol. These results are of significant importance for the improvement of proton-exchange membrane fuel cells.

14.
J Nanosci Nanotechnol ; 9(7): 4430-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19916469

RESUMEN

Ta2O5 nanopowders to be used as sensing electrodes in high temperature electrochemical gas sensors for hydrocarbons detection were synthesized using a sol-gel method and their structural and microstructural properties were investigated. The as-synthesized powders were heated at different temperatures in the range 250-1000 degrees C and characterized by TG-DTA, XRD, SEM, TEM and FT-IR. This investigation allowed to identify the correct thermal treatments to achieve the microstructural, textural and functional stability of materials working at high temperature, preserving their nano-metric grain size. Planar sensors fabricated by using Ta2O5 powders treated at 750 degrees C showed promising results for the selective detection of propylene at high temperature (700 degrees C). The good stability of the sensing response after gas exposure at high temperature was correlated to the stable microstructure the electrodes. Thus, Ta2O5 powders seems good candidate as sensing electrode for sensors for automotive exhausts monitoring.


Asunto(s)
Alquenos/análisis , Electroquímica/instrumentación , Gases/análisis , Nanoestructuras/química , Nanotecnología/instrumentación , Óxidos/química , Tantalio/química , Transductores , Cristalización/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Calor , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie
15.
Environ Int ; 130: 104852, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31195223

RESUMEN

Enzymatic hydrolysis of poly(1,4-butylene 2,5-thiophenedicarboxylate) (PBTF) and poly(1,4-butylene 2,5-furandicarboxylate) (PBF) by Humicola insolens (HiC) and Thermobifida cellulosilytica (Cut) cutinases is investigated. For the first time, the different depolymerization mechanisms of PBTF (endo-wise scission) and PBF (exo-wise cleavage) has been unveiled and correlated to the chemical structure of the two polyesters.


Asunto(s)
Actinobacteria/enzimología , Alquenos/metabolismo , Ácidos Carboxílicos/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Polímeros/metabolismo , Alquenos/química , Ácidos Carboxílicos/química , Hidrólisis , Polímeros/química , Thermobifida
16.
Nanomaterials (Basel) ; 9(8)2019 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-31382607

RESUMEN

Neutron scattering in combination with scanning electron and atomic force microscopy were employed to quantitatively resolve elemental composition, nano- through meso- to metallurgical structures and surface characteristics of two commercial stainless steel orthodontic archwires-G&H and Azdent. The obtained bulk composition confirmed that both samples are made of metastable austenitic stainless steel type AISI 304. The neutron technique's higher detection sensitivity to alloying elements facilitated the quantitative determination of the composition factor (CF), and the pitting resistance equivalent number (PREN) for predicting austenite stability and pitting-corrosion resistance, respectively. Simultaneous neutron diffraction analyses revealed that both samples contained additional martensite phase due to strain-induced martensite transformation. The unexpectedly high martensite content (46.20 vol%) in G&H was caused by combination of lower austenite stability (CF = 17.37, p = .03), excessive cold working and inadequate thermal treatment during material processing. Together, those results assist in revealing alloying recipes and processing history, and relating these with corrosion resistance and mechanical properties. The present methodology has allowed access to unprecedented length-scale (µm to sub-nm) resolution, accessing nano- through meso-scopic properties. It is envisaged that such an approach can be extended to the study and design of other metallic (bio)materials used in medical sciences, dentistry and beyond.

17.
Acta Biomater ; 4(2): 362-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17920344

RESUMEN

A technique for the preparation of bioglass foams for bone tissue engineering is presented. The process is based on the in situ foaming of a bioglass-loaded polyurethane foam as the intermediate step for obtaining a bioglass porous monolith, starting from sol-gel synthesized bioglass powders. The obtained foams were characterized using X-ray diffraction analysis, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy observations. The material was assessed by soaking samples in simulated body fluid and observing apatite layer formation. Diagnostic imaging taken from human patients was used to reconstruct a human bone portion, which was used to mould a tailored scaffold fabricated using the in situ foaming technique. The results confirmed that the obtained bioactive materials prepared with three-dimensional processing are promising for applications in reconstructive surgery tailored to each single patient.


Asunto(s)
Sustitutos de Huesos/aislamiento & purificación , Cerámica/aislamiento & purificación , Ingeniería de Tejidos/métodos , Regeneración Ósea , Huesos/anatomía & histología , Simulación por Computador , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Modelos Anatómicos , Difracción de Rayos X
18.
Front Pharmacol ; 9: 1183, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459604

RESUMEN

Cerium oxide nanoparticles (CNPs) are potent radical scavengers protecting cells from oxidative insults, including ionizing radiation. Here we show that CNPs prevent X-ray-induced oxidative imbalance reducing DNA breaks on HaCat keratinocytes, nearly abating mutagenesis. At the same time, and in spite of the reduced damage, CNPs strengthen radiation-induced cell cycle arrest and apoptosis outcome, dropping colony formation; notably, CNPs do not possess any intrinsic toxicity toward non-irradiated HaCat, indicating that they act on damaged cells. Thus CNPs, while exerting their antioxidant action, also reinforce the stringency of damage-induced cell integrity checkpoints, promoting elimination of the "tolerant" cells, being in fact radio-sensitizers. These two contrasting pathways are mediated by different activities of CNPs: indeed Sm-doped CNPs, which lack the Ce3+/Ce4+ redox switch and the correlated antioxidant action, fail to decrease radiation-induced superoxide formation, as expected, but surprisingly maintain the radio-sensitizing ability and the dramatic decrease of mutagenesis. The latter is thus attributable to elimination of damaged cells rather than decreased oxidative damage. This highlights a novel redox-independent activity of CNPs, allowing selectively eliminating heavily damaged cells through non-toxic mechanisms, rather reactivating endogenous anticancer pathways in transformed cells.

19.
ACS Appl Energy Mater ; 1(10): 5755-5765, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30406217

RESUMEN

In this work, benzimidazole (BZIM) and aminobenzimidazole (ABZIM) were used as organic-rich in nitrogen precursors during the synthesis of iron-nitrogen-carbon (Fe-N-C) based catalysts by sacrificial support method (SSM) technique. The catalysts obtained, denoted Fe-ABZIM and Fe-BZIM, were characterized morphologically and chemically through SEM, TEM, and XPS. Moreover, these catalysts were initially tested in rotating ring disk electrode (RRDE) configuration, resulting in similar high electrocatalytic activity toward oxygen reduction reaction (ORR) having low hydrogen peroxide generated (<3%). The ORR performance was significantly higher compared to activated carbon (AC) that was the control. The catalysts were then integrated into air-breathing (AB) and gas diffusion layer (GDL) cathode electrode and tested in operating microbial fuel cells (MFCs). The presence of Fe-N-C catalysts boosted the power output compared to AC cathode MFC. The AB-type cathode outperformed the GDL type cathode probably because of reduced catalyst layer flooding. The highest performance obtained in this work was 162 ± 3 µWcm-2. Fe-ABZIM and Fe-BZIM had similar performance when incorporated to the same type of cathode configuration. Long-term operations show a decrease up to 50% of the performance in two months operations. Despite the power output decrease, the Fe-BZIM/Fe-ABZIM catalysts gave a significant advantage in fuel cell performance compared to the bare AC.

20.
Dent Mater J ; 37(5): 835-842, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29998941

RESUMEN

Aim of this in vitro study was to analyze structural properties of two different polymeric orthodontic aligners, Exceed30 (EX30) and Smart Track (LD30), before and after use. Forty patterns of aligners were randomly selected: 20 LD30 and 20 EX30, worn intra-orally for 14±3 days, 22 h/day. From each aligner, 10 specimens were prepared from buccal surfaces of the incisor region by the cutting of samples 5×5 mm under a stereomicroscope. All samples were subjected to Fourier transform infrared spectroscopy, micro-Raman spectroscopy, X-ray diffraction, tensile and indentation strength test. LD30 appeared more homogeneous, with a crystalline fraction lower than EX30 and exhibited a higher elastic behavior and a lower tendency to warp after use than EX30. LD30 demonstrated better adaptability to the dental arch and greater consistency of application of orthodontic forces than produced with EX30. However, both materials showed structural modifications that resulted in increased sample hardness and hyper-plasticity.


Asunto(s)
Diseño de Aparato Ortodóncico , Aparatos Ortodóncicos Removibles , Elasticidad , Dureza , Humanos , Técnicas In Vitro , Ensayo de Materiales , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Propiedades de Superficie , Resistencia a la Tracción , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA