Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Glob Chang Biol ; 29(20): 5788-5801, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37306048

RESUMEN

Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activity.


Asunto(s)
Ciervos , Ecosistema , Humanos , Animales , Ciervos/fisiología , Actividades Humanas , América del Norte , Sistemas de Información Geográfica
2.
Heredity (Edinb) ; 123(2): 228-241, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30710096

RESUMEN

Red deer and wild boar are two major game species whose populations are managed and live in areas impacted by human activities. Measuring and understanding the impact of landscape features on individual movements and spatial patterns of genetic variability in these species is thus of importance for managers. A large number of individuals sampled across Wallonia (Belgium) for both species have been genotyped using microsatellite markers (respectively > 1700 and > 1200 genotyped individuals) and some individuals have also been followed using a capture-mark-recapture (CMR) protocol. The combined data set represents an unprecedented opportunity to study and compare the environmental factors impacting the interconnectivity of these large mammals. The present study describes and uses a landscape genetic workflow to compare spatial patterns of genetic variability and the impact of environmental factors on genetic differentiation. For the latter analyses, we investigate the correlation between genetic and environmental distances (pairwise approach) and also between local genetic dissimilarity and environmental conditions (point approach). Preliminary analyses of CMR data confirm that motorways act as significant barriers to dispersal. However, analyses performed with the pairwise approach do not highlight any evidence of an impact of motorways on genetic differentiation, which is presumably due to their recent establishment. Complementary analyses performed with the point approach reveal that low altitude tends to be associated with higher genetic dissimilarity. From a methodological point of view, the present workflow illustrates the complementary application of both pairwise and point approaches, as well as univariate and multivariate analyses.


Asunto(s)
Ciervos/genética , Sus scrofa/genética , Animales , Animales Salvajes , Bélgica , Genotipo , Humanos , Repeticiones de Microsatélite/genética , Porcinos
3.
Pathogens ; 12(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36839424

RESUMEN

African swine fever (ASF) is a fatal disease of suids that was detected in wild boar in Belgium in September 2018. The measures implemented to stop the spread and eliminate the African swine fever virus consisted of creating restriction zones, organising efficient search and removal of carcasses, constructing wire fences, and depopulating wild boar in the area surrounding the infected zone. The ASF management zone included the infected and the white zones and covered 1106 km² from which 7077 wild boar have been removed. A total of 5338 wild boars have been qPCR-tested and 833 have been detected ASF-positive. The search effort amounted to 60,631 h with a main focus on the infected zone (88%). A total of 277 km of fences have been set up. The main cause of mortality in the infected zone was the virus itself, while hunting, trapping, and night shooting were used together to reduce the wild boar density in the surrounding white zones. After continuous dispersion of the virus until March 2019, the epidemic wave stopped, and the last fresh positive case was discovered in August 2019. Hence, Belgium was declared free of the disease in November 2020.

4.
Front Vet Sci ; 8: 726117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712721

RESUMEN

The recent spreading of African swine fever (ASF) over the Eurasian continent has been acknowledged as a serious economic threat for the pork industry. Consequently, an extensive body of research focuses on the epidemiology and control of ASF. Nevertheless, little information is available on the combined effect of ASF and ASF-related control measures on wild boar (Sus scrofa) population abundances. This is crucial information given the role of the remaining wild boar that act as an important reservoir of the disease. Given the high potential of camera traps as a non-invasive method for ungulate trend estimation, we assess the effectiveness of ASF control measures using a camera trap network. In this study, we focus on a major ASF outbreak in 2018-2020 in the South of Belgium. This outbreak elicited a strong management response, both in terms of fencing off a large infected zone as well as an intensive culling regime. We apply a Bayesian multi-season site-occupancy model to wild boar detection/non-detection data. Our results show that (1) occupancy rates at the onset of our monitoring period reflect the ASF infection status; (2) ASF-induced mortality and culling efforts jointly lead to decreased occupancy over time; and (3) the estimated mean total extinction rate ranges between 22.44 and 91.35%, depending on the ASF infection status. Together, these results confirm the effectiveness of ASF control measures implemented in Wallonia (Belgium), which has regained its disease-free status in December 2020, as well as the usefulness of a camera trap network to monitor these effects.

5.
Curr Biol ; 30(17): 3444-3449.e4, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32619482

RESUMEN

Animals exhibit a diversity of movement tactics [1]. Tracking resources that change across space and time is predicted to be a fundamental driver of animal movement [2]. For example, some migratory ungulates (i.e., hooved mammals) closely track the progression of highly nutritious plant green-up, a phenomenon called "green-wave surfing" [3-5]. Yet general principles describing how the dynamic nature of resources determine movement tactics are lacking [6]. We tested an emerging theory that predicts surfing and the existence of migratory behavior will be favored in environments where green-up is fleeting and moves sequentially across large landscapes (i.e., wave-like green-up) [7]. Landscapes exhibiting wave-like patterns of green-up facilitated surfing and explained the existence of migratory behavior across 61 populations of four ungulate species on two continents (n = 1,696 individuals). At the species level, foraging benefits were equivalent between tactics, suggesting that each movement tactic is fine-tuned to local patterns of plant phenology. For decades, ecologists have sought to understand how animals move to select habitat, commonly defining habitat as a set of static patches [8, 9]. Our findings indicate that animal movement tactics emerge as a function of the flux of resources across space and time, underscoring the need to redefine habitat to include its dynamic attributes. As global habitats continue to be modified by anthropogenic disturbance and climate change [10], our synthesis provides a generalizable framework to understand how animal movement will be influenced by altered patterns of resource phenology.


Asunto(s)
Migración Animal/fisiología , Cambio Climático , Ciervos/fisiología , Ecosistema , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Animales , Sistemas de Información Geográfica , Herbivoria
6.
Transbound Emerg Dis ; 66(5): 1821-1826, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31183963

RESUMEN

African swine fever (ASF) is a fatal disease infectious to wild and domesticated suids. This disease entered the European Union in 2014 and recently reached western Europe, with the first cases observed in Belgium in September 2018. Carcasses of ASF-infected wild boar play an important role in the spread and persistence of the virus in the environment. Thus, rapidly finding and removing carcasses is a crucial measure for effective ASF control. Using distribution modelling, we investigated whether the fine-scale distribution of ASF-infected animals can be predicted and support wild boar carcass searches. Our results suggest that ASF-infected wild boar selected deathbeds in cool and moist habitats; thus, deathbed choice was mostly influenced by topographic and water-dependent covariates. Furthermore, we show that in the case of an epidemic, it is important to quickly collect a minimum of 75-100 carcasses with exact locations to build a well-performing and efficient carcass distribution model. The proposed model provides an indication of where carcasses are most likely to be found and can be used as a guide to strategically allocate resources.


Asunto(s)
Virus de la Fiebre Porcina Africana/aislamiento & purificación , Fiebre Porcina Africana/prevención & control , Epidemias/veterinaria , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Animales , Ecosistema , Europa (Continente)/epidemiología , Unión Europea , Sus scrofa , Porcinos
7.
Transbound Emerg Dis ; 66(6): 2566-2591, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31332955

RESUMEN

In a new example of pathogens hopscotching the globe, African swine fever virus hit north-western Europe's wildlife in summer 2018, marking a further spread of a disease that had invaded Central and Eastern Europe recently. The complete genomic sequence of the Belgium/Etalle/wb/2018 virus is reported, with the hope it will provide a valuable tool for tracing geographical spread and biologic evolution of the virus.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/virología , Enfermedades Transmisibles Emergentes/virología , Genoma Viral/genética , Secuenciación Completa del Genoma , Animales , Genotipo , Sistemas de Lectura Abierta/genética , Filogenia , Porcinos
8.
Vet Sci ; 7(1)2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31892104

RESUMEN

African swine fever (ASF) is a contagious haemorrhagic fever that affects both domesticated and wild pigs. Since ASF reached Europe wild boar populations have been a reservoir for the virus. Collecting reliable data on infected individuals in wild populations is challenging, and this makes it difficult to deploy an effective eradication strategy. However, for diseases with high lethality rate, infected carcasses can be used as a proxy for the number of infected individuals at a certain time. Then R0 parameter can be used to estimate the time distribution of the number of newly infected individuals for the outbreak. We estimated R0 for two ASF outbreaks in wild boar, in Czech Republic and Belgium, using the exponential growth method. This allowed us to estimate both R0 and the doubling time (Td) for those infections. The results are R0 = 1.95, Td = 4.39 for Czech Republic and R0 = 1.65, Td = 6.43 for Belgium. We suggest that, if estimated as early as possible, R0 and Td can provide an expected course for the infection against which to compare the actual data collected in the field. This would help to assess if passive surveillance is properly implemented and hence to verify the efficacy of the applied control measures.

9.
Sci Rep ; 8(1): 7631, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769562

RESUMEN

This study aimed to (1) identify the scale of environmental drivers of seasonal movements on the migration - residency behavior continuum in a large herbivore species and to (2) test the hypothesis that the same environmental drivers and spatio-temporal scaling should influence spatial processes in both migrants (long distance migration) and residents (short distance range shifts). We performed a comparative analysis of the influence of plant phenology and snow cover duration on seasonal movements of five partially migrating red deer populations with contrasting environmental conditions, at the seasonal range scale and at the study area scale. The five populations presented varying proportions of migrants, large gradients of migration distances and seasonal range shifts. The probability for a red deer to migrate was strongly influenced by large-scale environmental conditions, consistent with the resource heterogeneity hypothesis (high spatio-temporal scaling favors migration). Distances moved by both migrants and residents were strongly related to large-scale environmental conditions as well. We showed that similar proximal causes influenced these seasonal movements, reinforcing the idea of a continuum from migration to residency in response to seasonal environmental changes. Together, our findings suggest that global warming, by homogenizing large-scale environmental conditions, may thus decrease migratory tactics.


Asunto(s)
Migración Animal/fisiología , Ciervos/fisiología , Ecosistema , Ambiente , Fenómenos de Retorno al Lugar Habitual , Estaciones del Año , Animales
10.
Pest Manag Sci ; 71(4): 492-500, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25512181

RESUMEN

Across Europe, wild boar numbers increased in the 1960s-1970s but stabilised in the 1980s; recent evidence suggests that the numbers and impact of wild boar has grown steadily since the 1980s. As hunting is the main cause of mortality for this species, we reviewed wild boar hunting bags and hunter population trends in 18 European countries from 1982 to 2012. Hunting statistics and numbers of hunters were used as indicators of animal numbers and hunting pressure. The results confirmed that wild boar increased consistently throughout Europe, while the number of hunters remained relatively stable or declined in most countries. We conclude that recreational hunting is insufficient to limit wild boar population growth and that the relative impact of hunting on wild boar mortality had decreased. Other factors, such as mild winters, reforestation, intensification of crop production, supplementary feeding and compensatory population responses of wild boar to hunting pressure might also explain population growth. As populations continue to grow, more human-wild boar conflicts are expected unless this trend is reversed. New interdisciplinary approaches are urgently required to mitigate human-wild boar conflicts, which are otherwise destined to grow further.


Asunto(s)
Conservación de los Recursos Naturales/tendencias , Sus scrofa/fisiología , Agricultura , Animales , Cambio Climático , Europa (Continente) , Control de Plagas , Crecimiento Demográfico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA