Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Am Chem Soc ; 144(34): 15672-15679, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35993888

RESUMEN

Expanding proton-coupled electron transfer to multiproton translocations (MPCET) provides a bioinspired mechanism to transport protons away from the redox site. This expansion has been accomplished by separating the initial phenolic proton donor from the pyridine-based terminal proton acceptor by a Grotthuss-type proton wire made up of concatenated benzimidazoles that form a hydrogen-bonded network. However, it was found that the midpoint potential of the phenol oxidation that launched the Grotthuss-type proton translocations is a function of the number of benzimidazoles in the hydrogen-bonded network; it becomes less positive (i.e., a weaker oxidant) as the number of bridging benzimidazoles increases. Herein, we report a strategy to maintain the high redox potential necessary for oxidative processes relevant to artificial photosynthesis, e.g., water oxidation and long-range MPCET processes for managing protons. The integrated structural and functional roles of the benzimidazole-based bridge provide sites for substitution of the benzimidazoles with electron-withdrawing groups (e.g., trifluoromethyl groups). Such substitution increases the midpoint potential of the phenoxyl radical/phenol couple so that proton translocations over ∼11 Å become thermodynamically comparable to that of an unsubstituted system where one proton is transferred over ∼2.5 Å. The extended, substituted system maintains the hydrogen-bonded network; infrared spectroelectrochemistry confirms reversible proton translocations from the phenol to the pyridyl terminal proton acceptor upon oxidation and reduction. Theory supports the change in driving force with added electron-withdrawing groups and provides insight into the role of electron density and electrostatic potential in MPCET processes associated with these Grotthuss-type proton translocations.


Asunto(s)
Fenoles , Protones , Bencimidazoles/química , Transporte de Electrón , Hidrógeno/química , Oxidación-Reducción , Fenol/química , Fenoles/química
2.
J Am Chem Soc ; 140(45): 15450-15460, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30379075

RESUMEN

Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the TyrZ-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton-coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1 H-benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either ∼1.6 Å or ∼6.4 Å, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative p Ka values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (∼1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redox-coupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems.

3.
Phys Chem Chem Phys ; 17(5): 3550-9, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25537133

RESUMEN

We present a study of a carotenoid-porphyrin-fullerene triad previously shown to function as a chemical compass: the photogenerated carotenoid-fullerene radical pair recombines at a rate sensitive to the orientation of an applied magnetic field. To characterize the system we develop a time-resolved Low-Frequency Reaction Yield Detected Magnetic Resonance (tr-LF-RYDMR) technique; the effect of varying the relative orientation of applied static and 36 MHz oscillating magnetic fields is shown to be strongly dependent on the strength of the oscillating magnetic field. RYDMR is a diagnostic test for involvement of the radical pair mechanism in the magnetic field sensitivity of reaction rates or yields, and has previously been applied in animal behavioural experiments to verify the involvement of radical-pair-based intermediates in the magnetic compass sense of migratory birds. The spectroscopic selection rules governing RYDMR are well understood at microwave frequencies for which the so-called 'high-field approximation' is valid, but at lower frequencies different models are required. For example, the breakdown of the rotating frame approximation has recently been investigated, but less attention has so far been given to orientation effects. Here we gain physical insights into the interplay of the different magnetic interactions affecting low-frequency RYDMR experiments performed in the challenging regime in which static and oscillating applied magnetic fields as well as internal electron-nuclear hyperfine interactions are of comparable magnitude. Our observations aid the interpretation of existing RYDMR-based animal behavioural studies and will inform future applications of the technique to verify and characterize further the biological receptors involved in avian magnetoreception.


Asunto(s)
Carotenoides/química , Fulerenos/química , Espectroscopía de Resonancia Magnética , Porfirinas/química , Espectroscopía de Resonancia por Spin del Electrón , Furanos/química , Campos Magnéticos , Termodinámica
4.
J Am Chem Soc ; 136(34): 11994-2003, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25072525

RESUMEN

Two molecules in which the intensity of shorter-wavelength fluorescence from a strong fluorophore is modulated by longer-wavelength irradiation of an attached merocyanine-spirooxazine reverse photochromic moiety have been synthesized and studied. This unusual fluorescence behavior is the result of quenching of fluorophore fluorescence by the thermally stable, open, zwitterionic form of the spirooxazine, whereas the photogenerated closed, spirocyclic form has no effect on the fluorophore excited state. The population ratio of the closed and open forms of the spirooxazine is controlled by the intensity of the longer-wavelength modulated light. Both square wave and sine wave modulation were investigated. Because the merocyanine-spirooxazine is an unusual reverse photochrome with a thermally stable long-wavelength absorbing form and a short-wavelength absorbing photogenerated isomer with a very short lifetime, this phenomenon does not require irradiation of the molecules with potentially damaging ultraviolet light, and rapid modulation of fluorescence is possible. Molecules demonstrating these properties may be useful in fluorescent probes, as their use can discriminate between probe fluorescence and various types of adventitious "autofluorescence" from other molecules in the system being studied.


Asunto(s)
Benzopiranos/química , Colorantes Fluorescentes/síntesis química , Indoles/química , Luz , Oxazinas/química , Compuestos de Espiro/química , Absorción de Radiación , Técnicas Electroquímicas , Colorantes Fluorescentes/química , Modelos Químicos , Estructura Molecular , Procesos Fotoquímicos
5.
Phys Chem Chem Phys ; 16(33): 17569-79, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25025204

RESUMEN

A semiconducting porphyrin polymer that is solution processable and soluble in organic solvents has been synthesized, and its spectroscopic and electrochemical properties have been investigated. The polymer consists of diarylporphyrin units that are linked at meso-positions by aminophenyl groups, thus making the porphyrin rings an integral part of the polymer backbone. Hexyl chains on two of the aryl groups impart solubility. The porphyrin units interact only weakly in the ground electronic state. Excitation produces a local excited state that rapidly evolves into a state with charge-transfer character (CT) involving the amino nitrogen and the porphyrin macrocycle. Singlet excitation energy is transferred between porphyrin units in the chain with a time constant of ca. 210 ps. The final CT state has a lifetime of several nanoseconds, and the first oxidation of the polymer occurs at ca. 0.58 V vs. SCE. These properties make the polymer a suitable potential excited state electron donor to a variety of fullerenes or other acceptor species, suggesting that the polymer may find use in organic photovoltaics, sensors, and similar applications.


Asunto(s)
Polímeros/síntesis química , Porfirinas/síntesis química , Semiconductores , Conductividad Eléctrica , Ensayo de Materiales
6.
Nature ; 453(7193): 387-90, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18449197

RESUMEN

Approximately 50 species, including birds, mammals, reptiles, amphibians, fish, crustaceans and insects, are known to use the Earth's magnetic field for orientation and navigation. Birds in particular have been intensively studied, but the biophysical mechanisms that underlie the avian magnetic compass are still poorly understood. One proposal, based on magnetically sensitive free radical reactions, is gaining support despite the fact that no chemical reaction in vitro has been shown to respond to magnetic fields as weak as the Earth's ( approximately 50 muT) or to be sensitive to the direction of such a field. Here we use spectroscopic observation of a carotenoid-porphyrin-fullerene model system to demonstrate that the lifetime of a photochemically formed radical pair is changed by application of < or =50 microT magnetic fields, and to measure the anisotropic chemical response that is essential for its operation as a chemical compass sensor. These experiments establish the feasibility of chemical magnetoreception and give insight into the structural and dynamic design features required for optimal detection of the direction of the Earth's magnetic field.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Magnetismo , Modelos Biológicos , Orientación/fisiología , Animales , Anisotropía , Planeta Tierra , Superóxidos/metabolismo
7.
Phys Chem Chem Phys ; 15(39): 16605-14, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23959453

RESUMEN

A tetra-arylporphyrin dye was functionalized with three different anchoring groups used to attach molecules to metal oxide surfaces. The physical, photophysical and electrochemical properties of the derivatized porphyrins were studied, and the dyes were then linked to mesoporous TiO2. The anchoring groups were ß-vinyl groups bearing either a carboxylate, a phosphonate or a siloxy moiety. The siloxy linkages were made by treatment of the metal oxide with a silatrane derivative of the porphyrin. The surface binding and lability of the anchored molecules were studied, and dye performance was compared in a dye-sensitized solar cell (DSSC). Transient absorption spectroscopy was used to study charge recombination processes. At comparable surface concentration, the porphyrin showed comparable performance in the DSSC, regardless of the linker. However, the total surface coverage achievable with the carboxylate was about twice that obtainable with the other two linkers, and this led to higher current densities for the carboxylate DSSC. On the other hand, the carboxylate-linked dyes were readily leached from the metal oxide surface under alkaline conditions. The phosphonates were considerably less labile, and the siloxy-linked porphyrins were most resistant to leaching from the surface. The use of silatrane proved to be a practical and convenient way to introduce the siloxy linkages, which can confer greatly increased stability on dye-sensitized electrodes with photoelectrochemical performance comparable to that of the other linkers.

8.
Nano Lett ; 11(7): 2709-14, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21657259

RESUMEN

A novel scanning probe microscope stage permits break junction measurements of single molecule conductance while the molecules are illuminated with visible light. We studied a porphyrin-fullerene dyad molecule designed to form a charge separated state on illumination. A significant fraction of illuminated molecules become more conductive, returning to a lower conductance in the dark, suggesting the formation of a long-lived charge separated state on the indium-tin oxide surface. Transient absorption spectra of these molecular layers are consistent with formation of a long-lived charge separated state, a finding with implications for the design of molecular photovoltaic devices.


Asunto(s)
Fulerenos/química , Microscopía de Túnel de Rastreo/métodos , Nanotecnología/métodos , Porfirinas/química , Indio/química , Luz , Microscopía de Túnel de Rastreo/instrumentación , Nanotecnología/instrumentación , Tamaño de la Partícula , Propiedades de Superficie , Compuestos de Estaño/química
9.
ACS Appl Mater Interfaces ; 14(13): 15461-15467, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35343673

RESUMEN

Photo-switchable organic field-effect transistors (OFETs) represent an important platform for designing memory devices for a diverse array of products including security (brand-protection, copy-protection, keyless entry, etc.), credit cards, tickets, and multiple wearable organic electronics applications. Herein, we present a new concept by introducing self-assembled monolayers of donor-acceptor porphyrin-fullerene dyads as light-responsive triggers modulating the electrical characteristics of OFETs and thus pave the way to the development of advanced nonvolatile optical memory. The devices demonstrated wide memory windows, high programming speeds, and long retention times. Furthermore, we show a remarkable effect of the orientation of the fullerene-polymer dyads at the dielectric/semiconductor interface on the device behavior. In particular, the dyads anchored to the dielectric by the porphyrin part induced a reversible photoelectrical switching of OFETs, which is characteristic of flash memory elements. On the contrary, the devices utilizing the dyad anchored by the fullerene moiety demonstrated irreversible switching, thus operating as read-only memory (ROM). A mechanism explaining this behavior is proposed using theoretical DFT calculations. The results suggest the possibility of revisiting hundreds of known donor-acceptor dyads designed previously for artificial photosynthesis or other purposes as versatile optical triggers in advanced OFET-based multibit memory devices for emerging electronic applications.

10.
J Am Chem Soc ; 132(18): 6588-95, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20408535

RESUMEN

A molecular "hexad" in which five bis(phenylethynyl)anthracene (BPEA) fluorophores and a dithienylethene photochrome are organized by a central hexaphenylbenzene unit has been prepared. Singlet-singlet energy transfer among the BPEA units occurs on the 0.4 and 60 ps time scales, and when the dithienylethene is in the open form, the BPEA units fluoresce in the 515 nm region with a quantum yield near unity. When the dithienylethene is photoisomerized by UV light to the closed form, which absorbs in the 500-700 nm region, the closed isomer strongly quenches all of the excited singlet states of BPEA via energy transfer, causing the fluorescence quantum yield to drop to near zero. This photochemical behavior permits the hexad to function in a manner analogous to a triode vacuum tube or transistor. When a solution of the hexad is irradiated with steady-state light at 350 nm and with red light (>610 nm) of modulated intensity, the BPEA fluorescence excited by the 350 nm light is modulated accordingly. The fluorescence corresponds to the output of a triode tube or transistor and the modulated red light to the grid signal of the tube or gate voltage of the transistor. Frequency modulation, amplitude modulation, and phase modulation are all observed. The unusual ability to modulate intense, shorter-wavelength fluorescence with longer-wavelength light could be useful for the detection of fluorescence from probe molecules without interference from other emitters in biomolecular or nanotechnological applications.

11.
Photochem Photobiol Sci ; 9(7): 890-900, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20358126

RESUMEN

A hole- and electron-conducting polymer has been prepared by electropolymerization of a porphyrin-fullerene monomer. The porphyrin units are linked by aminophenyl groups to form a linear chain in which the porphyrin is an integral part of the polymer backbone. The absorption spectrum of a film formed on indium-tin-oxide-coated glass resembles that of a model porphyrin-fullerene dyad, but with significant peak broadening. The film demonstrates a first oxidation potential of 0.75 V vs. SCE, corresponding to oxidation of the porphyrin polymer, and a first reduction potential of -0.63 V vs. SCE, corresponding to fullerene reduction. Time-resolved fluorescence studies show that the porphyrin first excited singlet state is strongly quenched by photoinduced electron transfer to fullerene. Transient absorption investigations reveal that excitation generates mobile charge carriers that recombine by both geminate and nongeminate pathways over a large range of time scales. Similar studies on a related polymer that lacks the fullerene component show complex, laser-intensity-dependent photoinduced electron transfer behavior. The properties of the porphyrin-fullerene electropolymer suggest that it may be useful in organic photovoltaic applications, wherein light absorption leads to charge separation within picoseconds in a "molecular heterojunction" with no requirement for exciton migration.


Asunto(s)
Fulerenos/química , Procesos Fotoquímicos , Polímeros/química , Porfirinas/química , Absorción , Conductividad Eléctrica , Electroquímica , Transporte de Electrón , Espectrometría de Masas , Permeabilidad , Polímeros/síntesis química , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
12.
J Phys Chem B ; 113(20): 7147-55, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19438278

RESUMEN

In order to ensure efficient utilization of the solar spectrum, photosynthetic organisms use a variety of antenna chromophores to absorb light and transfer excitation to a reaction center, where photoinduced charge separation occurs. Reported here is a synthetic molecular heptad that features two bis(phenylethynyl)anthracene and two borondipyrromethene antennas linked to a hexaphenylbenzene core that also bears two zinc porphyrins. A fullerene electron acceptor self-assembles to both porhyrins via dative bonds. Excitation energy is transferred very efficiently from all four antennas to the porphyrins. Singlet-singlet energy transfer occurs both directly and by a stepwise funnel-like pathway wherein excitation moves down a thermodynamic gradient. The porphyrin excited states donate an electron to the fullerene with a time constant of 3 ps to generate a charge-separated state with a lifetime of 230 ps. The overall quantum yield is close to unity. In the absence of the fullerene, the porphyrin excited singlet state donates an electron to a borondipyrromethene on a slower time scale. This molecule demonstrates that by incorporating antennas, it is possible for a molecular system to harvest efficiently light throughout the visible from ultraviolet wavelengths out to approximately 650 nm.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Absorción , Antracenos/química , Benceno/química , Biomimética , Electrones , Transferencia de Energía , Fulerenos/química , Furanos/química , Luz , Metaloporfirinas/química , Modelos Moleculares , Conformación Molecular , Porfobilinógeno/análogos & derivados , Porfobilinógeno/química , Análisis Espectral , Factores de Tiempo
13.
Nanotechnology ; 20(50): 505203, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19923652

RESUMEN

A triethanolamine-protected silane, 1-(3'-amino)propylsilatrane, was incorporated into the structure of porphyrin- and ruthenium-based dyes and used to link them to transparent semiconductor nanoparticulate metal oxide films. Silatrane reacts with the metal oxide to form strong, covalent silyl ether bonds. In this study, silatrane-functionalized dyes and analogous carboxylate-functionalized dyes were used as visible light sensitizers for porous nanoparticulate SnO(2) photoanodes. The performance of the dyes was compared in photoelectrochemical cells incorporating either non-regenerative or regenerative redox components. The non-regenerative cell used NADH (beta-nicotinamide adenine dinucleotide) as a sacrificial electron donor and Hg(2)SO(4)/Hg as a sacrificial cathode, whereas the regenerative cell used the iodide/triiodide redox couple. Experiments showed that the silyl ether bonding gave the electrodes increased stability toward sensitizer desorption compared to carboxylate surface linkages. Porphyrin-silatrane dyes also demonstrated similar or better performance than their carboxylate analogs in photoelectrochemical cells. The improvement correlates with the results from transient absorbance spectroscopy, which show that the longer linker on the silatrane porphyrins slows charge recombination between oxidized porphyrin and the electrode surface. The improved photoelectrochemical cell efficiency and stability of the silatrane-based dyes compared to carboxylates demonstrate that silatranes are promising agents for bonding organic molecules to metal oxide surfaces.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Técnicas Electroquímicas/instrumentación , Nanopartículas/química , Compuestos de Organosilicio/química , Óxidos/química , Fotoquímica/instrumentación , Colorantes/química , Electrodos , Microscopía Electrónica de Rastreo , Fotólisis , Porfirinas/química , Análisis Espectral , Propiedades de Superficie
14.
Nat Commun ; 10(1): 3707, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420558

RESUMEN

The fact that many animals, including migratory birds, use the Earth's magnetic field for orientation and compass-navigation is fascinating and puzzling in equal measure. The physical origin of these phenomena has not yet been fully understood, but arguably the most likely hypothesis is based on the radical pair mechanism (RPM). Whilst the theoretical framework of the RPM is well-established, most experimental investigations have been conducted at fields several orders of magnitude stronger than the Earth's. Here we use transient absorption spectroscopy to demonstrate a pronounced orientation-dependence of the magnetic field response of a molecular triad system in the field region relevant to avian magnetoreception. The chemical compass response exhibits the properties of an inclination compass as found in migratory birds. The results underline the feasibility of a radical pair based avian compass and also provide further guidelines for the design and operation of exploitable chemical compass systems.


Asunto(s)
Migración Animal , Aves , Criptocromos , Campos Magnéticos , Orientación Espacial , Animales , Carotenoides/efectos de la radiación , Química Física , Fulerenos/efectos de la radiación , Láseres de Estado Sólido , Fotoquímica , Porfirinas/efectos de la radiación , Análisis Espectral
15.
J Am Chem Soc ; 130(7): 2226-33, 2008 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-18225896

RESUMEN

A close-packed monolayer of zinc 5,10,15,20-tetrakis(3-carboxyphenyl)porphyrin has been prepared and deposited on the thin native oxide covering the surface of an SOI-MOSFET (silicon-on-insulator metal-oxide-semiconductor field effect transistor) using Langmuir-Blodgett techniques. When the device is exposed to amine vapors in a nitrogen atmosphere, the amine coordinates to the zinc atom. The resulting change in electron distribution within the porphyrin leads to a large change in the drain current of the transistor, biased via a back gate. This change is sensitive to both the amount of amine present and the base strength of the amine. Only very small changes in drain current were observed with a monolayer of free base porphyrin or palmitic acid. After exposure to high pyridine concentrations, the device response saturates, but partially recovers after overnight exposure to flowing nitrogen gas. Interestingly, the device response is instantaneously reset by exposure to visible light, suggesting that photode-ligation occurs. An electrical model for the hybrid device that describes its response to ligand binding in terms of a change in the work function of the porphyrin monolayer has been developed. A transistor response to a few hundred attomoles of bound pyridine can be readily detected. This extreme sensitivity, coupled with the ability to reset the device using light, suggests that such systems might be useful as sensors.


Asunto(s)
Aminas/química , Metaloporfirinas/química , Zinc/química , Electroquímica , Concentración de Iones de Hidrógeno , Cinética , Luz , Modelos Moleculares , Óxidos/química , Piperidinas/química , Piridinas/química , Semiconductores , Silicio/química , Volatilización
16.
J Phys Chem B ; 112(9): 2678-85, 2008 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-18260660

RESUMEN

A caroteno-purpurin dyad molecule was studied by steady-state and pump-probe spectroscopies to resolve the excited-state deactivation dynamics of the different energy levels as well as the connecting energy flow pathways and corresponding rate constants. The data were analyzed with a two-step multi-parameter global fitting procedure that makes use of an evolutionary algorithm. We found that following ultrafast excitation of the donor (carotenoid) chromophore to its S2 state, the energy flows via two channels: energy transfer (70%) and internal conversion (30%) with time constants of 54 and 110 fs, respectively. Additionally, some of the initial excitation is found to populate the hot ground state, revealing another limitation to the functional efficiency. At later times, a back transfer occurs from the purpurin to the carotenoid triplet state in nanosecond timescales. Details of the energy flow within the dyad as well as species associated spectra are disentangled for all excited-state and ground-state species for the first time. We also observe oscillations with the most pronounced peak on the Fourier transform spectrum having a frequency of 530 cm(-1). The dyad mimics the dynamics of the natural light-harvesting complex LH2 from Rhodopseudomonas acidophila and is hence a good model system to be used in studies aimed to further explain previous work in which the branching ratio between the competing pathways of energy loss and energy transfer could be manipulated by adaptive femtosecond pulse shaping.


Asunto(s)
Antraquinonas/química , Proteínas Bacterianas/química , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Modelos Moleculares , beta Caroteno/química , Cinética , Espectrometría de Fluorescencia , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , beta Caroteno/análogos & derivados
17.
J Phys Chem A ; 112(18): 4215-23, 2008 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-18402483

RESUMEN

Laser-induced optoacoustic spectroscopy (LIOAS) measurements with carotene-porphyrin-acceptor "supermolecular" triads (C-P-A, with A = C60, a naphthoquinone NQ, and a naphthoquinone derivative, Q) were carried out with the purpose of analyzing the thermodynamic parameters for the formation and decay of the respective long-lived charge separated state C*+-P-A*-. The novel procedure of inclusion of the benzonitrile solutions of the triads in Triton X-100 micelle nanoreactors suspended in water permitted the separation of the enthalpic and structural volume change contributions to the LIOAS signals, by performing the measurements in the range 4-20 degrees C. Contractions of 4.2, 5.7, and 4.2 mL mol-1 are concomitant with the formation of C*+-P-A*- for A = C60, Q and NQ, respectively. These contractions are mostly attributed to solvent movements and possible conformational changes upon photoinduced electron transfer, due to the attraction of the oppositely charged ends, as a consequence of the giant dipole moment developed in these compounds upon charge separation ( approximately 110 D). The estimations combining the calculated free energies and the LIOAS-derived enthalpy changes indicate that entropy changes, attributed to solvent movements, control the process of electron transfer for the three triads, especially for C-P-C60 and C-P-Q. The heat released during the decay of 1 mol of charge separated state (CS) is much smaller than the respective enthalpy content obtained from the LIOAS measurements for the CS formation. This is attributed to the production of long-lived energy storing species upon CS decay.


Asunto(s)
Carotenoides/química , Entropía , Fulerenos/química , Naftoquinonas/química , Fotosíntesis , Porfirinas/química , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Fluorescencia , Micelas , Nanotecnología , Solventes/química , Temperatura
18.
Photochem Photobiol ; 83(2): 464-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17576351

RESUMEN

A hexaphenylbenzene-based zinc porphyrin dyad forms a 1:1 complex with a fullerene bearing two pyridyl groups via coordination of the pyridyl nitrogens with the zinc atoms. The fullerene is symmetrically located between the two zinc porphyrins. The binding constant for the complex is 7.3 x 10(4) M(-1) in 1,2-difluorobenzene. Photoinduced electron transfer from a porphyrin first excited singlet state to the fullerene occurs with a time constant of 3 ps, and the resulting charge-separated state has a lifetime of 230 ps. This self-assembled construct should form a basis for the construction of more elaborate model photosynthetic antenna-reaction center systems.

19.
ACS Cent Sci ; 3(5): 372-380, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28573198

RESUMEN

Nature employs a TyrZ-His pair as a redox relay that couples proton transfer to the redox process between P680 and the water oxidizing catalyst in photosystem II. Artificial redox relays composed of different benzimidazole-phenol dyads (benzimidazole models His and phenol models Tyr) with substituents designed to simulate the hydrogen bond network surrounding the TyrZ-His pair have been prepared. When the benzimidazole substituents are strong proton acceptors such as primary or tertiary amines, theory predicts that a concerted two proton transfer process associated with the electrochemical oxidation of the phenol will take place. Also, theory predicts a decrease in the redox potential of the phenol by ∼300 mV and a small kinetic isotope effect (KIE). Indeed, electrochemical, spectroelectrochemical, and KIE experimental data are consistent with these predictions. Notably, these results were obtained by using theory to guide the rational design of artificial systems and have implications for managing proton activity to optimize efficiency at energy conversion sites involving water oxidation and reduction.

20.
J Phys Chem B ; 109(30): 14401-9, 2005 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16852812

RESUMEN

Photoinduced electron transfer has been observed in a molecular triad, consisting of a porphyrin (P) covalently linked to a tetrathiafulvalene (TTF) and a fullerene derivative (C(60)), in the different phases of the liquid crystal E-7 and in a glass of 2-methyltetrahydrofuran (2-MeTHF) by means of time-resolved electron paramagnetic resonance (EPR) spectroscopy. In both solvents, an EPR signal observed immediately after excitation has been assigned to the radical pair TTF(*+)-P-C(60)(*-), based on its magnetic interaction parameters and spin polarization pattern. In the 2-MeTHF glass and the crystalline phase of E-7, the TTF(*+)-P-C(60)(*-) state is formed from the TTF-(1)P-C(60) singlet state via an initial TTF-P(*+)-C(60)(*-) charge-separated state. Long-lived charge separation ( approximately 8 mus) for the singlet-born radical pair is observed in the 2-MeTHF glass at cryogenic temperatures. In the nematic phase of E-7, a high degree of ordering in the liquid crystal is achieved by the molecular triad. In this phase, both singlet- and triplet-initiated electron transfer routes are concurrently active. At room temperature in the presence of the external magnetic field, the triplet-born radical pair (T)(TTF(*+)-P-C(60)(*-)) has a lifetime of approximately 7 mus, while that of the singlet-born radical pair (S)(TTF(*+)-P-C(60)(*-)) is much shorter (<1 mus). The difference in lifetimes is ascribed to spin dynamic effects in the magnetic field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA