Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 96(4): 1593-659, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27630175

RESUMEN

Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ(9)-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.


Asunto(s)
Cannabinoides/farmacología , Cannabis , Endocannabinoides/metabolismo , Receptores de Cannabinoides/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Humanos , Transducción de Señal/fisiología
2.
Pharmacol Res ; 189: 106683, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736415

RESUMEN

In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood. Here, we demonstrate that two multi-target natural products, cannabidiol (CBD) and cannabigerol (CBG), suppress HRPC development in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model by reprogramming metabolic and oncogenic signaling. Mechanistically, CBD increases glycolytic capacity and inhibits oxidative phosphorylation in enzalutamide-resistant HRPC cells. This action of CBD originates from its effect on metabolic plasticity via modulation of VDAC1 and hexokinase II (HKII) coupling on the outer mitochondrial membrane, which leads to strong shifts of mitochondrial functions and oncogenic signaling pathways. The effect of CBG on enzalutamide-resistant HRPC cells was less pronounced than CBD and only partially attributable to its action on mitochondria. However, when optimally combined, these two cannabinoids exhibited strong anti-tumor effects in TRAMP mice, even when these had become refractory to enzalutamide, thus pointing to their therapeutical potential against PCa.


Asunto(s)
Cannabidiol , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Cannabidiol/farmacología , Muerte Celular , Mitocondrias/metabolismo , Neoplasias de la Próstata/metabolismo , Fosforilación Oxidativa , Carcinogénesis/metabolismo , Hormonas/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047554

RESUMEN

Multicomponent reactions (MCRs) have emerged as a powerful strategy in synthetic organic chemistry due to their widespread applications in drug discovery and development. MCRs are flexible transformations in which three or more substrates react to form structurally complex products with high atomic efficiency. They are being increasingly appreciated as a highly exploratory and evolutionary tool by the medicinal chemistry community, opening the door to more sustainable, cost-effective and rapid synthesis of biologically active molecules. In recent years, MCR-based synthetic strategies have found extensive application in the field of drug discovery, and several anticancer drugs have been synthesized through MCRs. In this review, we present an overview of representative and recent literature examples documenting different approaches and applications of MCRs in the development of new anticancer drugs.


Asunto(s)
Antineoplásicos , Descubrimiento de Drogas , Análisis Costo-Beneficio , Técnicas Químicas Combinatorias , Química Orgánica , Antineoplásicos/uso terapéutico
4.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446093

RESUMEN

The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development of CB2-selective ligands therapeutically more attractive. The benzo[d]imidazole ring is considered to be a privileged scaffold in drug discovery and has demonstrated its versatility in the development of molecules with varied pharmacologic properties. On the other hand, the main psychoactive component of Cannabis sativa, delta-9-tetrahydrocannabinol (THC), can be structurally described as an aliphatic terpenoid motif fused to an aromatic polyphenolic (resorcinol) structure. Inspired by the structure of this phytocannabinoid, we combined different natural product motifs with a benzo[d]imidazole scaffold to obtain a new library of compounds targeting the CB2 receptor. Here, we synthesized 26 new compounds, out of which 15 presented CB2 binding and 3 showed potent agonist activity. SAR analysis indicated that the presence of bulky aliphatic or aromatic natural product motifs at position 2 of the benzo[d]imidazoles ring linked by an electronegative atom is essential for receptor recognition, while substituents with moderate bulkiness at position 1 of the heterocyclic core also participate in receptor recognition. Compounds 5, 6, and 16 were further characterized through in vitro cAMP functional assay, showing potent EC50 values between 20 and 3 nM, and compound 6 presented a significant difference between the EC50 of pharmacologic activity (3.36 nM) and IC50 of toxicity (30-38 µM).


Asunto(s)
Productos Biológicos , Cannabinoides , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Productos Biológicos/farmacología , Cannabinoides/farmacología , Cannabinoides/química , Imidazoles , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1 , Relación Estructura-Actividad , Mamíferos
5.
Molecules ; 28(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37446625

RESUMEN

Selective ligands of the CB2 receptor are receiving considerable attention due to their potential as therapeutic agents for a variety of diseases. Recently, 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives were shown to act at the CB2 receptor either as agonists or as inverse agonists/antagonists in vitro and to have anti-osteoarthritic activity in vivo. In this article, we report the synthesis, pharmacological profile, and molecular modeling of a series of twenty-three new 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamides with the aim of further developing this new class of selective CB2 ligands. In addition to these compounds, seven other analogs that had been previously synthesized were included in this study to better define the structure-activity relationship (SAR). Ten of the new compounds studied were found to be potent and selective ligands of the CB2 receptor, with Ki values ranging from 48.46 to 0.45 nM and CB1/CB2 selectivity indices (SI) ranging from >206 to >4739. In particular, compounds 54 and 55 were found to be high-affinity CB2 inverse agonists that were not active at all at the CB1 receptor, whereas 57 acted as an agonist. The functional activity profile of the compounds within this structural class depends mainly on the substitution pattern of the pyrazole ring.


Asunto(s)
Cannabinoides , Receptor Cannabinoide CB2 , Ligandos , Agonismo Inverso de Drogas , Relación Estructura-Actividad , Piridinas , Receptor Cannabinoide CB1
6.
Molecules ; 27(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500256

RESUMEN

Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Humanos , Unión Proteica , Ligandos , Agonistas de Receptores de Cannabinoides/química , Relación Estructura-Actividad , Sulfonamidas , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
7.
Molecules ; 26(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071439

RESUMEN

In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer's disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aß42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aß42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.


Asunto(s)
Cannabinoides/química , Receptores Colinérgicos/química , Enfermedad de Alzheimer/tratamiento farmacológico , Amidohidrolasas , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Carbamatos/farmacología , Química Farmacéutica/métodos , Colinérgicos , Cumarinas/uso terapéutico , Diseño de Fármacos , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Conformación Proteica , Ratas , Receptores de Cannabinoides , Rivastigmina/farmacología
8.
Bioorg Med Chem ; 28(11): 115513, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32340793

RESUMEN

Focusing on the importance of the free phenolic hydroxyl moiety, a family of 23 alkylresorcinol-based compounds were developed and evaluated for their cannabinoid receptor binding properties. The non-symmetrical hexylresorcinol derivative 29 turned out to be a CB2-selective competitive antagonist/inverse agonist endowed with good potency. Both the olivetol- and 5-(2-methyloctan-2-yl)resorcinol-based derivatives 23 and 24 exhibited a significant antinociceptive activity. Interestingly, compound 24 proved to be able to activate both cannabinoid and TRPV1 receptors. Even if cannabinoid receptor subtype selectivity remained a goal only partially achieved, results confirm the validity of the alkylresorcinol nucleus as skeleton for the identification of potent cannabinoid receptor modulators.


Asunto(s)
Amidas/farmacología , Analgésicos/farmacología , Receptores de Cannabinoides/metabolismo , Resorcinoles/farmacología , Amidas/síntesis química , Amidas/química , Analgésicos/síntesis química , Analgésicos/química , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Estructura Molecular , Ratas , Resorcinoles/química , Relación Estructura-Actividad , Canales Catiónicos TRPV/metabolismo
9.
J Nat Prod ; 83(7): 2060-2065, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32649196

RESUMEN

A simple synthesis of the major oxidized metabolites in mammalian tissues of (-)-Δ9-tetrahydrocannabivarin (THCV) (1) has been accomplished by kinetic studies of allylic oxidation using SeO2 on botanically derived THCV with the aim to yield primary and secondary allylic alcohols concurrently. This synthetic approach led to the preparation of numerous THCV derivatives, including two new compounds, 8α-hydroxy-Δ9-tetrahydrocannabivarin (2) and 8ß-hydroxy-Δ9-tetrahydrocannabivarin (3), and the known compounds 11-hydroxy-Δ9-tetrahydrocannabivarin (4) and Δ9-tetrahydrocannabivarin-11-oic acid (5), without affecting the C-10a stereogenic center in the natural precursor and without formation of tricyclic dibenzopyran derivatives. This simple synthetic methodology could be useful to investigate the pharmacological role of THCV metabolites at, among others, the endocannabinoid CB1 and CB2 receptors for which THCV reportedly acts as respectively a neutral antagonist and partial agonist.


Asunto(s)
Cannabinoides/síntesis química , Mamíferos/metabolismo , Animales , Cannabinoides/metabolismo , Análisis Espectral/métodos
10.
J Neuroinflammation ; 16(1): 274, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31878942

RESUMEN

BACKGROUND: Palmitoylethanolamide (PEA) is a pleiotropic endogenous lipid mediator currently used as a "dietary food for special medical purposes" against neuropathic pain and neuro-inflammatory conditions. Several mechanisms underlie PEA actions, among which the "entourage" effect, consisting of PEA potentiation of endocannabinoid signaling at either cannabinoid receptors or transient receptor potential vanilloid type-1 (TRPV1) channels. Here, we report novel molecular mechanisms through which PEA controls mast cell degranulation and substance P (SP)-induced histamine release in rat basophilic leukemia (RBL-2H3) cells, a mast cell model. METHODS: RBL-2H3 cells stimulated with SP were treated with PEA in the presence and absence of a cannabinoid type-2 (CB2) receptor antagonist (AM630), or a diacylglycerol lipase (DAGL) enzyme inhibitor (OMDM188) to inhibit the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). The release of histamine was measured by ELISA and ß-hexosaminidase release and toluidine blue staining were used as indices of degranulation. 2-AG levels were measured by LC-MS. The mRNA expression of proposed PEA targets (Cnr1, Cnr2, Trpv1, Ppara and Gpr55), and of PEA and endocannabinoid biosynthetic (Napepld, Dagla and Daglb) and catabolic (Faah, Naaa and Mgl) enzymes were also measured. The effects of PEA on the activity of DAGL-α or -ß enzymes were assessed in COS-7 cells overexpressing the human recombinant enzyme or in RBL-2H3 cells, respectively. RESULTS: SP increased the number of degranulated RBL-2H3 cells and triggered the release of histamine. PEA counteracted these effects in a manner antagonized by AM630. PEA concomitantly increased the levels of 2-AG in SP-stimulated RBL-2H3 cells, and this effect was reversed by OMDM188. PEA significantly stimulated DAGL-α and -ß activity and, consequently, 2-AG biosynthesis in cell-free systems. Co-treatment with PEA and 2-AG at per se ineffective concentrations downmodulated SP-induced release of histamine and degranulation, and this effect was reversed by OMDM188. CONCLUSIONS: Activation of CB2 underlies the inhibitory effects on SP-induced RBL-2H3 cell degranulation by PEA alone. We demonstrate for the first time that the effects in RBL-2H3 cells of PEA are due to the stimulation of 2-AG biosynthesis by DAGLs.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Degranulación de la Célula/efectos de los fármacos , Etanolaminas/farmacología , Lipoproteína Lipasa/metabolismo , Mastocitos/efectos de los fármacos , Ácidos Palmíticos/farmacología , Amidas , Animales , Línea Celular Tumoral , Técnicas In Vitro , Mastocitos/enzimología , Ratas , Sustancia P/farmacología
11.
Molecules ; 24(13)2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31247911

RESUMEN

Phenolic profiling of ten plant samples of Mentha rotundifolia (L.) Huds. collected from different bioclimatic areas of Tunisia, was for the first time carried out by using a fast ultra-high-performance liquid chromatography (UHPLC)-high resolution tandem mass spectrometry (HRMS/MS) method on a Q Exactive platform equipped with an electrospray ionization (ESI) source. An intraspecific, interpopulation variability was evidenced and a total of 17 polyphenolic metabolites were identified and quantified by using the UHPLC-HRESIMS/MS method, here validated for specificity, linearity, limit of detection, limit of quantitation, accuracy and precision. The quantitative method resulted sensitive at the nM level and reliable for rapid polyphenol quantification in vegetal matrices. The metabolomic study allowed us to identify a new compound, named salvianolic acid W, which was isolated and characterized mainly by NMR and MS analysis. A statistical correlation of the phenolic composition with antioxidant and anti-acetylcholinesterase activities was provided.


Asunto(s)
Mentha/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Cromatografía Líquida de Alta Presión , Flavonoides , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Túnez
12.
Neurobiol Dis ; 73: 60-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25281318

RESUMEN

Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Discapacidades del Desarrollo/inducido químicamente , Dronabinol/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Factores de Edad , Animales , Ciclohexanoles/farmacocinética , Maleato de Dizocilpina/farmacocinética , Estradiol/sangre , Ciclo Estral/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacocinética , Femenino , Técnicas In Vitro , Neuritas/efectos de los fármacos , Piperidinas/farmacología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/ultraestructura , Pirazoles/farmacología , Cintigrafía , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato/metabolismo , Potenciales Sinápticos/efectos de los fármacos , Tritio/farmacocinética
13.
Bioorg Med Chem ; 22(17): 4770-83, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25065940

RESUMEN

In our ongoing program aimed at deeply investigating the endocannabinoid system (ES), a set of new alkyl-resorcinol derivatives was prepared focusing on the nature and the importance of the carboxamide functionality. Binding studies on CB1 and CB2 receptors, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) showed that some of the newly developed compounds behaved as very potent cannabinoid receptor ligands (Ki in the nanomolar range) while, however, none of them was able to inhibit MAGL and/or FAAH. Derivative 11 was a potent CB1 and CB2 ligand, with Ki values similar to WIN 55,212, exhibiting a CB1 and CB2 agonist profile in vitro. In the formalin test of peripheral acute and inflammatory pain in mice, this compound showed a weak and delayed antinociceptive effect against the second phase of the nocifensive response, exhibiting, interestingly, a quite potent transient receptor potential ankyrin type-1 (TRPA1) channel agonist activity. Moreover, derivative 14, characterized by lower affinity but higher CB2 selectivity than 11, proved to behave as a weak CB2 competitive inverse agonist.


Asunto(s)
Analgésicos/farmacología , Proteínas del Tejido Nervioso/agonistas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Resorcinoles/farmacología , Canales de Potencial de Receptor Transitorio/agonistas , Analgésicos/síntesis química , Analgésicos/química , Animales , Células CHO , Canales de Calcio , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Masculino , Ratones , Estructura Molecular , Células 3T3 NIH , Nocicepción/efectos de los fármacos , Dolor/tratamiento farmacológico , Dimensión del Dolor/efectos de los fármacos , Resorcinoles/síntesis química , Resorcinoles/química , Relación Estructura-Actividad , Canal Catiónico TRPA1
14.
Comput Biol Med ; 175: 108486, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653065

RESUMEN

In this paper, we introduce DeLA-DrugSelf, an upgraded version of DeLA-Drug [J. Chem. Inf. Model. 62 (2022) 1411-1424], which incorporates essential advancements for automated multi-objective de novo design. Unlike its predecessor, which relies on SMILES notation for molecular representation, DeLA-DrugSelf employs a novel and robust molecular representation string named SELFIES (SELF-referencing Embedded String). The generation process in DeLA-DrugSelf not only involves substitutions to the initial string representing the starting query molecule but also incorporates insertions and deletions. This enhancement makes DeLA-DrugSelf significantly more adept at executing data-driven scaffold decoration and lead optimization strategies. Remarkably, DeLA-DrugSelf explicitly addresses the SELFIES-related collapse issue, considering only collapse-free compounds during generation. These compounds undergo a rigorous quality metrics evaluation, highlighting substantial advancements in terms of drug-likeness, uniqueness, and novelty compared to the molecules generated by the previous version of the algorithm. To evaluate the potential of DeLA-DrugSelf as a mutational operator within a genetic algorithm framework for multi-objective optimization, we employed a fitness function based on Pareto dominance. Our objectives focused on target-oriented properties aimed at optimizing known cannabinoid receptor 2 (CB2R) ligands. The results obtained indicate that DeLA-DrugSelf, available as a user-friendly web platform (https://www.ba.ic.cnr.it/softwareic/delaself/), can effectively contribute to the data-driven optimization of starting bioactive molecules based on user-defined parameters.


Asunto(s)
Algoritmos , Programas Informáticos , Diseño de Fármacos , Humanos
15.
ACS Chem Neurosci ; 15(5): 955-971, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38372253

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative form of dementia characterized by the loss of synapses and a progressive decline in cognitive abilities. Among current treatments for AD, acetylcholinesterase (AChE) inhibitors have efficacy limited to symptom relief, with significant side effects and poor compliance. Pharmacological agents that modulate the activity of type-2 cannabinoid receptors (CB2R) of the endocannabinoid system by activating or blocking them have also been shown to be effective against neuroinflammation. Herein, we describe the design, synthesis, and pharmacological effects in vitro and in vivo of dual-acting compounds that inhibit AChE and butyrylcholinesterase (BChE) and target CB2R. Within the investigated series, compound 4g proved to be the most promising. It achieved IC50 values in the low micromolar to submicromolar range against both human cholinesterase isoforms while antagonizing CB2R with Ki of 31 nM. Interestingly, 4g showed neuroprotective effects on the SH-SY5Y cell line thanks to its ability to prevent oxidative stress-induced cell toxicity and reverse scopolamine-induced amnesia in the Y-maze forced alternation test in vivo.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Neuroblastoma , Fármacos Neuroprotectores , Humanos , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptores de Cannabinoides , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
16.
J Med Chem ; 67(13): 11003-11023, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38937147

RESUMEN

Cannabinoid receptor subtype 2 (CB2R) is emerging as a pivotal biomarker to identify the first steps of inflammation-based diseases such as cancer and neurodegeneration. There is an urgent need to find specific probes that may result in green and safe alternatives to the commonly used radiative technologies, to deepen the knowledge of the CB2R pathways impacting the onset of the above-mentioned pathologies. Therefore, based on one of the CB2R pharmacophores, we developed a class of fluorescent N-adamantyl-1-alkyl-4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives spanning from the green to the near-infrared (NIR) regions of the light spectrum. Among the synthesized fluorescent ligands, the green-emitting compound 55 exhibited a favorable binding profile (strong CB2R affinity and high selectivity). Notably, this ligand demonstrated versatility as its use was validated in different experimental settings such as flow cytometry saturation, competitive fluorescence assays, and in vitro microglia cells mimicking inflammation states where CB2R are overexpressed.


Asunto(s)
Colorantes Fluorescentes , Microglía , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB2/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Microglía/metabolismo , Humanos , Animales , Quinolinas/química , Quinolinas/síntesis química , Adamantano/análogos & derivados , Adamantano/química , Adamantano/síntesis química , Adamantano/farmacología , Ligandos , Relación Estructura-Actividad
17.
J Med Chem ; 67(3): 1758-1782, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38241614

RESUMEN

New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)-5a-v, (±)-6a-j, and (±)-7a-d) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-5d, (±)-5l, and (±)-5r. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. 5v was identified as selective for MAGL when compared with other serine hydrolases. Solubility, in vitro metabolic stability, cytotoxicity, and absence of mutagenicity were determined for selected analogues. The most promising compounds ((±)-5c, (±)-5d, and (±)-5v) were used for in vivo studies in mice, showing a decrease in MAGL activity and increased 2-arachidonoyl-sn-glycerol levels in forebrain tissue. In particular, 5v is characterized by a high eudysmic ratio and (3R,4S)-5v is one of the most potent irreversible inhibitors of h/mMAGL identified thus far. These results suggest that the new MAGL inhibitors have therapeutic potential for different central and peripheral pathologies.


Asunto(s)
Inhibidores Enzimáticos , Monoacilglicerol Lipasas , Ratones , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Monoglicéridos , Ligandos
18.
Eur J Med Chem ; 269: 116298, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493727

RESUMEN

The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.


Asunto(s)
Cannabinoides , Receptor Cannabinoide CB2 , Ratones , Animales , Pirroles/farmacología , Cannabinoides/farmacología , Neurotransmisores/farmacología , Derivados de Escopolamina , Agonistas de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB1
19.
Biochem Pharmacol ; 218: 115924, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37972874

RESUMEN

Cannabinoid CB2 receptor (CB2R) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CB2R might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated. One example is cannabidiol-dimethylheptyl (CBD-DMH), which exhibits anti-inflammatory effects. Nevertheless, its pharmacological mechanism of action is not yet fully understood and is hypothesized for multiple targets, including CB2R. The aim of this study was to further investigate the molecular pharmacology of CBD-DMH on CB2R while CBD was taken along as control. These compounds were screened in equilibrium and kinetic radioligand binding studies and various functional assays, including G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. In dissociation studies, CBD-DMH allosterically modulated the radioligand binding. Furthermore, CBD-DMH negatively modulated the G protein activation of reference agonists CP55,940, AEA and 2-AG, but not the agonist-induced ß-arrestin-2 recruitment. Nevertheless, CBD-DMH also displayed competitive binding to CB2R and partial agonism on G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. CBD did not exhibit such allosteric behavior and only very weakly bound CB2R without activation. This study shows a dual binding mode of CBD-DMH, but not CBD, to CB2R with the suggestion of two different binding sites. Altogether, it encourages further research into this dual mechanism which might provide a new class of molecules targeting CB2R.


Asunto(s)
Cannabidiol , Cannabidiol/farmacología , Receptores de Cannabinoides/metabolismo , beta-Arrestina 1/metabolismo , Proteínas de Unión al GTP/metabolismo , Receptor Cannabinoide CB2/metabolismo , Dronabinol , Receptor Cannabinoide CB1/metabolismo , Agonistas de Receptores de Cannabinoides
20.
Cell Death Discov ; 9(1): 81, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36872341

RESUMEN

Prostate cancer (PCa) is a leading cause of death in the male population commonly treated with androgen deprivation therapy that often relapses as androgen-independent and aggressive castration-resistant prostate cancer (CRPC). Ferroptosis is a recently described form of cell death that requires abundant cytosolic labile iron to promote membrane lipid peroxidation and which can be induced by agents that inhibit the glutathione peroxidase-4 activity such as RSL3. Exploiting in vitro and in vivo human and murine PCa models and the multistage transgenic TRAMP model of PCa we show that RSL3 induces ferroptosis in PCa cells and demonstrate for the first time that iron supplementation significantly increases the effect of RSL3 triggering lipid peroxidation, enhanced intracellular stress and leading to cancer cell death. Moreover, the combination with the second generation anti-androgen drug enzalutamide potentiates the effect of the RSL3 + iron combination leading to superior inhibition of PCa and preventing the onset of CRPC in the TRAMP mouse model. These data open new perspectives in the use of pro-ferroptotic approaches alone or in combination with enzalutamide for the treatment of PCa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA