Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Fish Biol ; 102(5): 1096-1108, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36647775

RESUMEN

The environment experienced by a female influences reproductive traits in many species of fish. Environmental factors such as temperature and diet are not only important mediators of female maturation and reproduction but also of egg traits and offspring fitness through maternal provisioning. In this study, we use 3-year-old tank-reared Atlantic salmon from two Finnish populations to investigate the effect of temperature and diet on maturation and egg traits. We show that a temperature difference of 2°C is sufficient to delay maturation in female Atlantic salmon whereas a 22% reduction in dietary energy content had no effect on maturation. Diet did not influence the body size, condition or fecundity of the mature females or the size or protein content of the eggs. However, a higher energy diet increased egg lipid content. Neither female body size nor condition were associated with egg size or fat/protein composition. Our results indicate that female salmon that have a poorer diet in terms of energy content may have a reproductive disadvantage due to the lower energy provisioning of eggs. This disadvantage has the potential to translate into fitness consequences for their offspring.


Asunto(s)
Salmo salar , Animales , Femenino , Temperatura , Reproducción , Fertilidad , Dieta/veterinaria
2.
J Fish Biol ; 100(5): 1264-1271, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35289932

RESUMEN

We tested the possibility that vgll3, a gene linked with maturation age in Atlantic salmon (Salmo salar), may be associated with behaviour by measuring aggressiveness and feeding activity in 380 juveniles with different vgll3 genotypes. Contrary to our prediction, individuals with the genotype associated with later maturation (vgll3*LL) were significantly more aggressive than individuals with the genotype associated with earlier maturation (vgll3*EE). Individuals with higher aggression were also significantly lighter in colour and had higher feeding activity. Although higher aggression was associated with higher feeding activity, there was no association between feeding activity and vgll3 genotype. Increased aggression of vgll3*LL individuals was independent of their sex and size, and genotypes did not differ in their condition factor. These results imply that aggressive behaviour may have an energetic cost impairing growth and condition, especially when food cannot be monopolized. This may have implications for individual fitness and aquaculture practices.


Asunto(s)
Salmo salar , Agresión , Animales , Genotipo , Salmo salar/genética , Factores de Transcripción/genética
3.
Ecol Evol ; 14(6): e11449, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835521

RESUMEN

Studies linking genetics, behavior and life history in any species are rare. In Atlantic salmon (Salmo salar), age at maturity is a key life-history trait and associates strongly with the vgll3 locus, whereby the vgll3*E allele is linked with younger age at maturity, and higher body condition than the vgll3*L allele. However, the relationship between this genetic variation and behaviors like boldness and exploration which may impact growth and reproductive strategies is poorly understood. The pace-of-life syndrome (POLS) framework provides predictions, whereby heightened exploratory behavior and boldness are predicted in individuals with the early maturation-associated vgll3 genotype (EE). Here, we tested these predictions by investigating the relationship between vgll3 genotypes and exploration and boldness behaviors in 129 juveniles using the novel environment and novel object trials. Our results indicated that contrary to POLS predictions, vgll3*LL fish were bolder and more explorative, suggesting a genotype-level syndrome including several behaviors. Interestingly, clear sex differences were observed in the latency to move in a new environment, with vgll3*EE males, but not females, taking longer to move than their vgll3*LL counterparts. Our results provide further empirical support for recent calls to consider more nuanced explanations than the pace of life theory for integrating behavior into life-history theory.

4.
Conserv Physiol ; 11(1): coac086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726866

RESUMEN

Age at maturity is a key life history trait involving a trade-off between survival risk and reproductive investment, and is an important factor for population structures. In ectotherms, a warming environment may have a dramatic influence on development and life history, but this influence may differ between populations. While an increasing number of studies have examined population-dependent reactions with temperature, few have investigated this in the context of maturation timing. Atlantic salmon, a species of high conservation relevance, is a good study species for this topic as it displays considerable variation in age at maturity, of which a large proportion has been associated with a genomic region including the strong candidate gene vgll3. Until now, the effect of this gene in the context of different environments and populations has not been studied. Using a large-scale common-garden experiment, we find strong effects of temperature, population-of-origin, and vgll3 genotype on maturation in 2-year-old male Atlantic salmon (Salmo salar). With a temperature difference of 1.8°C, maturation probability was 4.8 times higher in the warm treatment than the cold treatment. This temperature effect was population-specific and was higher in the southern (60.48°N) compared to the northern (65.01°N) population. The early maturation vgll3*E allele was associated with a significantly higher maturation probability, but there was no vgll3 interaction with temperature or population. Both body condition and body mass associated with maturation. The body mass association was only present in the warm treatment. Our findings demonstrate that (i) populations can vary in their response to temperature change in terms of age at maturity, (ii) high intrinsic growth could be associated with higher thermal sensitivity for life history variation and (iii) vgll3 effects on age at maturity might be similar between populations and different thermal environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA