Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Plant J ; 113(2): 357-374, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458345

RESUMEN

The phytohormone abscisic acid (ABA) plays a prominent role in various abiotic stress responses of plants. In the ABA-dependent osmotic stress response, SnRK2.6, one of the subclass III SnRK2 kinases, has been identified as playing a key role by phosphorylating and activating downstream genes. Although several modulatory proteins have been reported to be phosphorylated by SnRK2.6, the identities of the full spectrum of downstream targets have yet to be sufficiently established. In this study, we identified CaSAP14, a stress-associated protein in pepper (Capsicum annuum), as a downstream target of CaSnRK2.6. We elucidated the physical interaction between SnRK2.6 and CaSAP14, both in vitro and in vivo, and accordingly identified a C-terminal C2H2-type zinc finger domain of CaSAP14 as being important for their interaction. CaSAP14-silenced pepper plants showed dehydration- and high salt-sensitive phenotypes, whereas overexpression of CaSAP14 in Arabidopsis conferred tolerance to dehydration, high salinity, and mannitol treatment, with plants showing ABA-hypersensitive phenotypes. Furthermore, an in-gel kinase assay revealed that CaSnRK2.6 phosphorylates CaSAP14 in response to exogenous ABA, dehydration, and high-salinity stress. Collectively, these findings suggest that CaSAP14 is a direct substrate of CaSnRK2.6 and positively modulates dehydration- and high salinity-induced osmotic stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Osmorregulación , Deshidratación , Proteínas de Choque Térmico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Presión Osmótica
2.
New Phytol ; 243(4): 1361-1373, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38934066

RESUMEN

Posttranslational modification of multiple ABA signaling components is an essential process for the adaptation and survival of plants under stress conditions. In our previous study, we established that the pepper group A PP2C protein CaAITP1, one of the core components of ABA signaling, undergoes ubiquitination mediated by the RING-type E3 ligase CaAIRE1. In this study, we discovered an additional form of regulation mediated via the SUMOylation of CaAITP1. Pepper plants subjected to drought stress were characterized by reductions in both the stability and SUMOylation of CaAITP1 protein. Moreover, we identified a SUMO protease, Capsicum annuum DeSUMOylating Isopeptidase 2 (CaDeSI2), as a new interacting partner of CaAITP1. In vitro and in vivo analyses revealed that CaAITP1 is deSUMOylated by CaDeSI2. Silencing of CaDeSI2 in pepper plants led to drought-hypersensitive and ABA-hyposensitive phenotypes, whereas overexpression of CaDeSI2 in transgenic Arabidopsis plants resulted in the opposite phenotypes. Importantly, we found that the CaAITP1 protein was stabilized in response to the silencing of CaDeSI2, and CaDeSI2 and CaAITP1 co-silenced pepper plants were characterized by drought-tolerant phenotypes similar to those observed in CaAITP1-silenced pepper. Collectively, our findings indicate that CaDeSI2 reduces the stability of CaAITP1 via deSUMOylation, thereby positively regulating drought tolerance.


Asunto(s)
Ácido Abscísico , Capsicum , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Capsicum/genética , Capsicum/fisiología , Capsicum/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Sumoilación , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/fisiología , Silenciador del Gen , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Unión Proteica , Estabilidad Proteica , Fenotipo
3.
Plant Cell Environ ; 47(4): 1319-1333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221841

RESUMEN

Controlling protein stability or degradation via the ubiquitin-26S proteasome system is a crucial mechanism in plant cellular responses to stress conditions. Previous studies have revealed that the pepper FANTASTIC FOUR-like gene, CaFAF1, plays a positive role in salt tolerance and that, in this process, CaFAF1 protein degradation is delayed. Here, we sought to isolate the E3 ligases potentially responsible for modulating CaFAF1 protein stability in response to salt stress. The pepper RING-type E3 ligase CaFIRF1 (Capsicum  annuum  FAF1  Interacting  RING  Finger protein  1) was found to interact with and ubiquitinate CaFAF1, leading to the degradation of CaFAF1 proteins. In response to high-salt treatments, CaFIRF1-silenced pepper plants exhibited tolerant phenotypes. In contrast, co-silencing of CaFAF1 and CaFIRF1 led to increased sensitivity to high-salt treatments, revealing that CaFIRF1 functions upstream of CaFAF1. A cell-free degradation analysis showed that high-salt treatment suppressed CaFAF1 protein degradation via the 26S proteasome pathway, in which CaFIRF1 is functionally involved. In addition, an in vivo ubiquitination assay revealed that CaFIRF1-mediated ubiquitination of CaFAF1 proteins was reduced by high-salt treatment. Taken together, these findings suggest that the degradation of CaFAF1 mediated by CaFIRF1 has a critical role in pepper plant responses to high salinity.


Asunto(s)
Ácido Abscísico , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Physiol Plant ; 176(2): e14240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38561015

RESUMEN

Under stress conditions, plants modulate their internal states and initiate various defence mechanisms to survive. The ubiquitin-proteasome system is one of the critical modules in these mechanisms, and Plant U-Box proteins play an important role in this process as E3 ubiquitin ligases. Here, we isolated the Plant U-box 24 gene CaPUB24 (Capsicum annuum Plant U-Box 24) from pepper and characterized its functions in response to drought stress. We found that, compared to the other CaPUBs in the same group, the expression of CaPUB24 was significantly induced by drought stress. We also found that CaPUB24 was localized to the nucleus and cytoplasm and had E3 ubiquitin ligase activity. To investigate the biological role of CaPUB24 in response to drought stress further, we generated CaPUB24-silenced pepper plants and CaPUB24-overexpressing Arabidopsis transgenic plants. CaPUB24-silenced pepper plants exhibited enhanced drought tolerance compared to the control plants due to reduced transpirational water loss and increased abscisic acid (ABA) sensitivity. In contrast, CaPUB24-overexpressing Arabidopsis transgenic plants exhibited reduced drought tolerance and ABA-insensitive phenotypes. Our findings suggest that CaPUB24 negatively modulates drought stress response in an ABA-dependent manner.


Asunto(s)
Arabidopsis , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Sequías , Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
5.
New Phytol ; 238(1): 237-251, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36565039

RESUMEN

The phytohormone abscisic acid (ABA) is important for the plant growth and development, in which it plays a key role in the responses to drought stress. Among the core components of ABA signaling, SnRK2s interact with a range of proteins, including Raf-like MAP3Ks. In this study, we isolated the pepper MEKK subfamily member CaMEKK23 that interacts with CaSnRK2.6. CaMEKK23 has kinase activity and is specifically trans-phosphorylated by CaSnRK2.6. Compared with control plants, CaMEKK23-silenced pepper were found to be sensitive to drought stress and insensitive to ABA, whereas overexpression of CaMEKK23 in both pepper and Arabidopsis plants induced the opposite phenotypes. These altered phenotypes were established to be dependent on the kinase activity of CaMEKK23, which was also shown to interact with CaPP2Cs, functioning upstream of CaSnRK2.6. In addition to inhibiting the kinase activity of CaMEKK23, these CaPP2Cs were found to have inhibitory effects on CaSnRK2.6. Using CaMEKK23-, CaAITP1/CaMEKK23-, CaSnRK2.6-, and CaAITP1/CaSnRK2.6-silenced pepper, we revealed that CaMEKK23 and CaSnRK2.6 function downstream of CaAITP1. Collectively, our findings indicate that CaMEKK23 plays a positive regulatory role in the ABA-mediated drought stress responses in pepper plants, and that its phosphorylation status is modulated by CaSnRK2.6 and CaPP2Cs, functioning as core components of ABA signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Transducción de Señal , Sequías , Arabidopsis/genética , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Plant Cell Environ ; 46(11): 3242-3257, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37563998

RESUMEN

Plants have developed various defense mechanisms against environmental stresses by regulating hormone signaling. Jasmonic acid (JA) is a major phytohormone associated with plant defense responses. JASMONATE ZIM-DOMAIN (JAZ) proteins play a regulatory role in repressing JA signaling, impacting plant responses to both biotic and abiotic stresses. Here, we isolated 7 JAZ genes in pepper and selected CA03g31030, a Capsicum annuum JAZ1-03 (CaJAZ1-03) gene, for further study based on its expression level in response to abiotic stresses. Through virus-induced gene silencing (VIGS) in pepper and overexpression in transgenic Arabidopsis plants, we established the functional role of CaJAZ1-03. Functional studies revealed that CaJAZ1-03 dampens abscisic acid (ABA) signaling and drought stress responses. The cell-free degradation assay showed faster degradation of CaJAZ1-03 in drought- or ABA-treated pepper leaves compared to healthy leaves. Conversely, CaJAZ1-03 was completely preserved under MG132 treatment, indicating that CaJAZ1-03 stability is modulated via the ubiquitin-26s proteasome pathway. We also found that the pepper RING-type E3 ligase CaASRF1 interacts with and ubiquitinates CaJAZ1-03. Additional cell-free degradation assays revealed a negative correlation between CaJAZ1-03 and CaASRF1 expression levels. Collectively, these findings suggest that CaJAZ1-03 negatively regulates ABA signaling and drought responses and that its protein stability is modulated by CaASRF1.

7.
Plant Cell Environ ; 46(7): 2061-2077, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37128851

RESUMEN

Abscisic acid (ABA) signalling triggers drought resistance mediated by SNF1-related kinase 2s (SnRK2s), which transmits stress signals through the phosphorylation of several downstream factors. However, these kinases and their downstream targets remain elusive in pepper plants. This study aimed to isolate interacting partners of CaSnRK2.6, a homologue of Arabidopsis SnRK2.6/OST1. Among the candidate proteins, we identified a homeodomain-leucine zipper (HD-Zip) class II protein and named it CaHAT1 (Capsicum annuum homeobox ABA signalling related- transcription factor 1). CaHAT1-silenced pepper and -overexpression (OE) transgenic Arabidopsis plants were generated to investigate the in vivo function of CaHAT1 in drought response. Following the application of drought stress, CaHAT1-silenced pepper plants exhibited drought-sensitive phenotypes with reduced ABA-mediated stomatal closure and lower expression of stress-responsive genes compared with control plants. In contrast, CaHAT1-OE transgenic Arabidopsis plants showed the opposite phenotypes, including increased drought resistance and ABA sensitivity. CaHAT1, particularly its N-terminal consensus sequences, was directly phosphorylated by CaSnRK2.6. Furthermore, CaSnRK2.6 kinase activity and CaSnRK2.6-mediated CaHAT1 phosphorylation levels were enhanced by treatment with ABA and drought stress. Taken together, our results indicated that CaHAT1, which is the target protein of CaSnRK2.6, is a positive regulator of drought stress response. This study advances our understanding of CaHAT1-CaSnRK2.6 mediated defence mechanisms in pepper plants against drought stress.


Asunto(s)
Ácido Abscísico , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Sequías , Genes Homeobox , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas
8.
Physiol Plant ; 175(6): e14082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148202

RESUMEN

Under severe environmental stress conditions, plants inhibit their growth and development and initiate various defense mechanisms to survive. The pseudo-response regulator (PRRs) genes have been known to be involved in fruit ripening and plant immunity in various plant species, but their role in responses to environmental stresses, especially high salinity and dehydration, remains unclear. Here, we focused on PRRs in tomato plants and identified two PRR2-like genes, SlSRP1 and SlSRP1H, from the leaves of salt-treated tomato plants. After exposure to dehydration and high-salt stresses, expression of SISRP1, but not SlSRP1H, was significantly induced in tomato leaves. Subcellular localization analysis showed that SlSRP1 was predominantly located in the nucleus, while SlSRP1H was equally distributed in the nucleus and cytoplasm. To further investigate the potential role of SlSRP1 in the osmotic stress response, we generated SISRP1-silenced tomato plants. Compared to control plants, SISRP1-silenced tomato plants exhibited enhanced tolerance to high salinity, as evidenced by a high accumulation of proline and reduced chlorosis, ion leakage, and lipid peroxidation. Moreover, SISRP1-silenced tomato plants showed dehydration-tolerant phenotypes with enhanced abscisic acid sensitivity and increased expression of stress-related genes, including SlRD29, SlAREB, and SlDREB2. Overall, our findings suggest that SlSRP1 negatively regulates the osmotic stress response.


Asunto(s)
Deshidratación , Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Ácido Abscísico/metabolismo , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Plant J ; 107(4): 1148-1165, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34145668

RESUMEN

Abscisic acid (ABA) is a plant hormone that activates adaptive mechanisms to environmental stress conditions. Plant adaptive mechanisms are complex and highly modulated processes induced by stress-responsive proteins; however, the precise mechanisms by which these processes function under adverse conditions remain unclear. Here, we isolated CaUBP12 (Capsicum annuum ubiquitin-specific protease 12) from pepper (C. annuum) leaves. We show that CaUBP12 expression is significantly induced after exposure to abiotic stress treatments. We conducted loss-of-function and gain-of-function genetic studies to elucidate the biological functions of CaUBP12 in response to ABA and dehydration stress. CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants displayed dehydration-sensitive and dehydration-tolerant phenotypes, respectively; these phenotypes were characterized by regulation of transpirational water loss and stomatal aperture. Under dehydration stress conditions, CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants exhibited lower and higher expression levels of stress-related genes, respectively, than the control plants. We isolated a CaUBP12 interaction protein, CaSnRK2.6, which is a homolog of Arabidopsis OST1; degradation of this protein was partially inhibited by CaUBP12. Similar to CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants, CaSnRK2.6-silenced pepper plants and CaSnRK2.6-overexpressing Arabidopsis displayed dehydration-sensitive and dehydration-tolerant phenotypes, respectively. Our findings suggest that CaUBP12 positively modulates the dehydration stress response by suppressing CaSnRK2.6 protein degradation.


Asunto(s)
Capsicum/fisiología , Deshidratación/genética , Proteínas de Plantas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Mutación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Estabilidad Proteica , Semillas/efectos de los fármacos , Semillas/fisiología , Proteasas Ubiquitina-Específicas/genética
10.
New Phytol ; 235(6): 2313-2330, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35672943

RESUMEN

Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) is a reversible post-translational modification associated with protein stability and activity, and modulates hormone signaling and stress responses in plants. Previously, we reported that the pepper dehydration-responsive homeobox domain transcription factor CaDRHB1 acts as a positive modulator of drought response. Here, we show that CaDRHB1 protein stability is enhanced by SUMO E3 ligase Capsicum annuum DRHB1-interacting SAP and Miz domain (SIZ1) (CaDSIZ1)-mediated SUMOylation in response to drought, thereby positively modulating abscisic acid (ABA) signaling and drought responses. Substituting lysine (K) 138 of CaDRHB1 with arginine reduced CaDSIZ1-mediated SUMOylation, indicating that K138 is the principal site for SUMO conjugation. Virus-induced silencing of CaDSIZ1 promoted CaDRHB1 degradation, suggesting that CaDSIZ1 is involved in drought-induced SUMOylation of CaDRHB1. CaDSIZ1 interacted with and facilitated SUMO conjugation of CaDRHB1. CaDRHB1, mainly localized in the nucleus, but also in the cytoplasm in the SUMOylation mimic state, suggesting that SUMOylation of CaDRHB1 promotes its nuclear export, leading to cytoplasmic accumulation. Moreover, CaDSIZ1-silenced pepper plants were less sensitive to ABA and considerably sensitive to drought stress, whereas CaDSIZ1-overexpressing plants displayed ABA-hypersensitive and drought-tolerant phenotypes. Collectively, our data indicate that CaDSIZ1-mediated SUMOylation of CaDRHB1 functions in ABA-mediated drought tolerance.


Asunto(s)
Arabidopsis , Ubiquitina-Proteína Ligasas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
New Phytol ; 231(6): 2247-2261, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34101191

RESUMEN

Induction of the abscisic acid (ABA) signalling network is associated with various stress conditions, including cold, high salinity and drought. As core ABA signalling components, group A type 2C protein phosphatases (PP2Cs) interact with and inhibit snf1-related protein kinase2s. Here, we isolated and characterised the pepper mitogen-activated protein kinase kinase kinase CaADIK1, which interacts with the group A PP2C CaADIP1. CaADIK1 transcripts were induced by abiotic stresses, and CaADIK1 localised in the nucleus and cytoplasm. We verified that CaADIP1 inhibits the autokinase activity of CaADIK1; moreover, the kinase activity of CaADIK1 is enhanced by drought stress. We performed genetic analysis using CaADIK1-silenced pepper and CaADIK1-overexpressing (OX) Arabidopsis plants. CaADIK1-silenced pepper plants showed drought-sensitive phenotypes, whereas CaADIK1-OX Arabidopsis plants showed ABA-sensitive and drought-tolerant phenotypes. In CaADIK1K32N -OX Arabidopsis plants mutated at the ATP-binding site, the ABA-insensitive and drought-sensitive phenotypes were restored. Taken together, our findings show that CaADIK1 positively regulates the ABA-dependent drought stress response and is inhibited by CaADIP1.


Asunto(s)
Capsicum , Sequías , Ácido Abscísico/farmacología , Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal , Estrés Fisiológico
12.
J Exp Bot ; 72(12): 4520-4534, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33837765

RESUMEN

Plants have developed defense mechanisms to survive in extreme environmental conditions. Abscisic acid (ABA) is a key phytohormone associated with plant adaptation to environmental stress. In this study, we isolated and functionally characterized the pepper RING-type E3 ligase CaAIRE1 (Capsicum annuum ABA Induced RING-type E3 ligase 1) containing the C3HC4-type RING domain. CaAIRE1 was induced by ABA and drought, and CaAIRE1 had E3 ligase activity. CaAIRE1-silenced pepper and CaAIRE1-overexpressing Arabidopsis presented drought-sensitive and drought-tolerant phenotypes, respectively, which were accompanied by altered transpiration water loss and ABA sensitivity. Moreover, we found that CaAIRE1 interacts with and ubiquitinates the pepper type 2C protein phosphatase, CaAITP1 (Capsicum annuum CaAIRE1 Interacting Target Phosphatase 1). A cell-free degradation assay with CaAIRE1-silenced peppers and CaAIRE1-overexpressing Arabidopsis plants revealed that the CaAITP1 protein level was negatively modulated by the expression level of CaAIRE1. In contrast to CaAIRE1, CaAITP1-silenced pepper showed ABA-sensitivity phenotypes. CaAITP1-overexpressing Arabidopsis plants were the most insensitive phenotypes to ABA compared with the wild type and other pepper PP2C-overexpressing plants. Taken together, our data indicate that CaAITP1 plays a major role as a negative modulator in ABA signaling, and CaAIRE1 regulates the ABA signaling and drought response through modulation of CaAITP1 stability.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Capsicum , Sequías , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Curr Genomics ; 22(1): 4-15, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34045920

RESUMEN

Under drought stress, plants have developed various mechanisms to survive in the reduced water supply, of which the regulation of stress-related gene expression is responsible for several transcription factors. The basic leucine zippers (bZIPs) are one of the largest and most diverse transcription factor families in plants. Among the 10 Arabidopsis bZIP groups, group A bZIP transcription factors function as a positive or negative regulator in ABA signal transduction and drought stress response. These bZIP transcription factors, which are involved in the drought response, have also been isolated in various plant species such as rice, pepper, potato, and maize. Recent studies have provided substantial evidence that many bZIP transcription factors undergo the post-translational modifications, through which the regulation of their activity or stability affects plant responses to various intracellular or extracellular stimuli. This review aims to address the modulation of the bZIP proteins in ABA signaling and drought responses through phosphorylation, ubiquitination and sumoylation.

14.
Plant J ; 98(1): 5-18, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30548716

RESUMEN

Plants have evolved complex defense mechanisms to adapt and survive under adverse growth conditions. Abscisic acid (ABA) is a phytohormone that plays a pivotal role in the stress response, especially regulation of the stomatal aperture in response to drought. Here, we identified the pepper CaASRF1 (Capsicum annuum ABA Sensitive RING Finger E3 ligase 1) gene, which modulates drought stress tolerance via ABA-mediated signaling. CaASRF1 contains a C3H2C3-type RING finger domain, which functions as an E3 ligase by attaching ubiquitins to the target proteins. CaASRF1 expression was enhanced after exposure to ABA, drought and NaCl. Loss-of-function in pepper plants and gain-of-function in Arabidopsis plants revealed that CaASRF1 positively modulates ABA signaling and the drought stress response. Moreover, CaASRF1 interacted with and was associated with degradation of the bZIP transcription factor CaAIBZ1 (Capsicum annuum ASRF1-Interacting bZIP transcription factor 1). Contrary to CaASRF1 phenotypes, CaAIBZ1-silenced pepper and CaAIBZ1-overexpressing Arabidopsis exhibited drought-tolerant and drought-sensitive phenotypes, respectively. Taken together, our data indicate that CaASRF1 positively modulates ABA signaling and the drought stress response via modulation of CaAIBZ1 stability.


Asunto(s)
Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Capsicum/enzimología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Capsicum/genética , Capsicum/fisiología , Sequías , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes Reporteros , Mutación con Pérdida de Función , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Dominios Proteicos , Cloruro de Sodio/metabolismo , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/metabolismo
15.
Plant J ; 100(2): 399-410, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31278798

RESUMEN

Ubiquitination is a eukaryotic protein modulation system for identifying and affecting proteins that are no longer needed in the cell. In a previous study, we elucidated the biological function of CaASRF1, which contains a RING finger domain and functions as an E3 ligase. We showed that CaASRF1 positively modulates abscisic acid (ABA) signalling and drought stress tolerance by modulating the stability of subgroup D bZIP transcription factor CaAIBZ1. We performed yeast two-hybrid (Y2H) screening to identify an additional target protein of CaASRF1. In this study, we identified pepper CaATBZ1 (Capsicum annuum ASRF1 target bZIP transcription factor 1), which belongs to the subgroup A bZIP transcription factors. We investigated the biological function of this protein using virus-induced gene silencing (VIGS) in pepper plants and by generating overexpressing transgenic Arabidopsis plants. Our loss-of-function and gain-of-function studies revealed that CaATBZ1 negatively modulates ABA signalling and drought stress response. Consistent with CaATBZ1-silenced pepper plants, CaASRF1/CaATBZ1-silenced pepper plants displayed drought-tolerant phenotypes via ABA-mediated signalling. Our results demonstrated that CaASRF1-mediated ubiquitination plays a crucial role in regulating the stability of CaATBZ1. These findings provide valuable insight into the post-translational regulation of transcriptional factors.


Asunto(s)
Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Capsicum/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Capsicum/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Estabilidad Proteica , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
16.
Plant J ; 100(3): 473-486, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31436880

RESUMEN

Recent work has established a core ABA signaling pathway in which A-type PP2C protein phosphatases act as central negative modulators. Although ABA signaling inhibits PP2C activity through ABA-receptor complex, it remains unknown if other mechanisms exist to modulate the level of PP2Cs. Here, we identified a RING domain ubiquitin E3 ligase, PIR1 (PP2CA interacting RING finger protein 1), that interacted with PP2CA. Of the two splicing isoforms, PIR1.2 was isolated from leaf tissue. The PIR1.2 exhibited E3 ligase activity and determined PP2CA stability in the presence of ABA. Consistent with the conclusion that PIR1 promotes ABA signaling by removing PP2CA, a negative modulator, the pir1 knockout mutant displayed an ABA-hyposensitive phenotype. We further showed that PIR2, the closest homologue of PIR1.2, also interacted with PP2CA. Although the pir2 knockout mutant did not display altered ABA response, the pir1-1/pir2 double mutant became more insensitive to ABA than the wild-type or pir1-1 and pir2 single mutants. Using a cell-free degradation assay, ABA promoted degradation of PP2CA, however, such degradation was delayed when incubated with protein extract prepared from the pir1-1/pir2 double mutant. Our data suggest that PIR1 and PIR2 positively modulate ABA signaling by targeting PP2CA for degradation.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Empalme Alternativo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Técnicas de Inactivación de Genes , Péptidos y Proteínas de Señalización Intercelular/genética , Isoenzimas , Fenotipo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteolisis , Dominios RING Finger , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
Plant Cell Environ ; 43(8): 1911-1924, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32421865

RESUMEN

Protein degradation by the ubiquitin/26S proteasome system is a critical process that modulates many eukaryotic cellular processes. E3 ligase usually modulates stress response by adjusting the stability of transcription factors. Previous studies have shown that a RING-type E3 ligase, CaASRF1, positively modulates abscisic acid (ABA) signalling and ABA-mediated drought response by modulating the stability of CaAIBZ1 and CaATBZ1. In this study, we conducted yeast two-hybrid (Y2H) screening with CaATBZ1 to isolate an additional modulator, identified as CaATIR1 (Capsicum annuum ATBZ1 Interacting RING finger protein 1). CaATIR1 has E3 ligase activity and promoted CaATBZ1 degradation using the 26S proteasome system. We investigated the loss-of and gain-of functions of this E3 ligase by using silencing pepper and overexpressing (OX) Arabidopsis plants, respectively. In response to ABA and drought treatments, CaATIR1-silenced pepper plants showed ABA insensitive and drought-sensitive phenotypes, while CaATIR1-OX plants showed the opposite phenotypes. Additionally, CaATBZ1-silencing rescued the ABA insensitive and drought-sensitive phenotypes of CaATIR1-silencing pepper plants. Taken together, these data demonstrate that the stability of CaATBZ1 mediated by CaATIR1 has a crucial role in drought stress signalling in pepper plants.


Asunto(s)
Ácido Abscísico/metabolismo , Capsicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Plantas Modificadas Genéticamente , Mapas de Interacción de Proteínas , Transducción de Señal , Nicotiana/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
Plant J ; 96(2): 452-467, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30051516

RESUMEN

Abscisic acid (ABA) is a plant hormone that plays a key role in the environmental stress response, especially the induction of ABA-responsive and stress-responsive genes and modulation of the stomatal aperture in response to drought stress. Here, we identified CaDILZ1 (Capsicum annuum Drought-Induced Leucine Zipper 1) belonging to subgroup D of the bZIP protein family; gene functions of this family in response to ABA and drought signaling still remain unknown. CaDILZ1 expression was significantly induced in pepper leaves after exposure to ABA, drought, and NaCl. The CaDILZ1 protein localized in the nucleus of plant cells. In response to drought stress, CaDILZ1-silenced pepper and CaDILZ1-overexpressing Arabidopsis plants exhibited drought-sensitive and drought-tolerant phenotypes, respectively, via altered ABA content, stomatal closure, and expression of ABA-responsive and drought-responsive marker genes. We isolated the RING finger protein CaDSR1 (Capsicum annuum Drought Sensitive RING finger protein 1), which interacted with CaDILZ1 in the nucleus. The CaDSR1 protein exhibited E3 ligase activity and promoted CaDILZ1 degradation via the 26S proteasome pathway. Under drought stress conditions, CaDSR1-silenced pepper and CaDSR1-overexpressing Arabidopsis plants exhibited contrasting phenotypes to those of CaDILZ1-silenced pepper and CaDILZ1-overexpressing Arabidopsis plants. Taken together, our data suggest that CaDSR1 and CaDILZ1 function in ABA-mediated drought stress signaling in pepper plants.


Asunto(s)
Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Capsicum/genética , Capsicum/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Capsicum/enzimología , Sequías , Silenciador del Gen , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética
19.
Plant Physiol ; 173(4): 2323-2339, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28184010

RESUMEN

Ubiquitin-mediated protein modification occurs at multiple steps of abscisic acid (ABA) signaling. Here, we sought proteins responsible for degradation of the pepper (Capsicum annuum) type 2C protein phosphatase CaADIP1 via the 26S proteasome system. We showed that the RING-type E3 ligase CaAIRF1 (Capsicum annuum ADIP1 Interacting RING Finger Protein 1) interacts with and ubiquitinates CaADIP1. CaADIP1 degradation was slower in crude proteins from CaAIRF1-silenced peppers than in those from control plants. CaAIRF1-silenced pepper plants displayed reduced ABA sensitivity and decreased drought tolerance characterized by delayed stomatal closure and suppressed induction of ABA- and drought-responsive marker genes. In contrast, CaAIRF1-overexpressing Arabidopsis (Arabidopsis thaliana) plants exhibited ABA-hypersensitive and drought-tolerant phenotypes. Moreover, in these plants, CaADIP1-induced ABA hyposensitivity was strongly suppressed by CaAIRF1 overexpression. Our findings highlight a potential new route for fine-tune regulation of ABA signaling in pepper via CaAIRF1 and CaADIP1.


Asunto(s)
Ácido Abscísico/farmacología , Capsicum/metabolismo , Sequías , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Capsicum/enzimología , Capsicum/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Microscopía Confocal , Fosfoproteínas Fosfatasas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Proteolisis/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Transducción de Señal , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética
20.
Plant Cell Environ ; 41(7): 1593-1604, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29574779

RESUMEN

Abscisic acid (ABA) is major plant hormone involved in regulating abiotic stress responses. Several studies have established that an ABA-signalling transduction pathway-from ABA perception to response-functions in plant cells. The group A PP2Cs constitute core components of ABA signalling, and they negatively regulate ABA signalling and stress responses. Recent studies have identified and functionally analysed regulators of PP2C activity; however, the precise regulatory mechanisms remain unclear. In the present study, we used a yeast 2-hybrid (Y2H) screening analysis to identify the DEAD-box RNA helicase RH8, which interacted with PP2CA in the nucleus. rh8 knockout mutants exhibited ABA hyposensitivity and drought-susceptible phenotypes characterized by high levels of transpirational water loss via reduced stomatal closure and decreased leaf temperatures. However, rh8/pp2ca double mutants showed ABA hypersensitivity and drought-tolerant phenotypes, indicating that RH8 and PP2CA function in the same ABA-signalling pathway in the drought stress response; moreover, RH8 functions upstream of PP2CA. In vitro phosphatase and kinase assays revealed that RH8 inhibits PP2CA phosphatase activity. Our data indicate that RH8 and its interacting partner PP2CA modulate the drought stress response via ABA-dependent signalling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiología , ARN Helicasas DEAD-box/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/enzimología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , ARN Helicasas DEAD-box/metabolismo , Deshidratación , Técnicas de Inactivación de Genes , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA