Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mSystems ; 9(4): e0139723, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38501880

RESUMEN

Iron is a transition metal used as a cofactor in many biochemical reactions. In bacteria, iron homeostasis involves Fur-mediated de-repression of iron uptake systems, such as the iron-chelating compounds siderophores. In this work, we identified and characterized novel regulatory systems that control siderophores in the environmental opportunistic pathogen Chromobacterium violaceum. Screening of a 10,000-transposon mutant library for siderophore halos identified seven possible regulatory systems involved in siderophore-mediated iron homeostasis in C. violaceum. Further characterization revealed a regulatory cascade that controls siderophores involving the transcription factor VitR acting upstream of the quorum-sensing (QS) system CviIR. Mutation of the regulator VitR led to an increase in siderophore halos, and a decrease in biofilm, violacein, and protease production. We determined that these effects occurred due to VitR-dependent de-repression of vioS. Increased VioS leads to direct inhibition of the CviR regulator by protein-protein interaction. Indeed, insertion mutations in cviR and null mutations of cviI and cviR led to an increase of siderophore halos. RNA-seq of the cviI and cviR mutants revealed that CviR regulates CviI-dependent and CviI-independent regulons. Classical QS-dependent processes (violacein, proteases, and antibiotics) were activated at high cell density by both CviI and CviR. However, genes related to iron homeostasis and many other processes were regulated by CviR but not CviI, suggesting that CviR acts without its canonical CviI autoinducer. Our data revealed a complex regulatory cascade involving QS that controls siderophore-mediated iron homeostasis in C. violaceum.IMPORTANCEThe iron-chelating compounds siderophores play a major role in bacterial iron acquisition. Here, we employed a genetic screen to identify novel siderophore regulatory systems in Chromobacterium violaceum, an opportunistic human pathogen. Many mutants with increased siderophore halos had transposon insertions in genes encoding transcription factors, including a novel regulator called VitR, and CviR, the regulator of the quorum-sensing (QS) system CviIR. We found that VitR is upstream in the pathway and acts as a dedicated repressor of vioS, which encodes a direct CviR-inhibitory protein. Indeed, all QS-related phenotypes of a vitR mutant were rescued in a vitRvioS mutant. At high cell density, CviIR activated classical QS-dependent processes (violacein, proteases, and antibiotics production). However, genes related to iron homeostasis and type-III and type-VI secretion systems were regulated by CviR in a CviI- or cell density-independent manner. Our data unveil a complex regulatory cascade integrating QS and siderophores in C. violaceum.


Asunto(s)
Chromobacterium , Hierro , Sideróforos , Humanos , Sideróforos/genética , Bacterias/metabolismo , Homeostasis/genética , Antibacterianos/química , Péptido Hidrolasas
2.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39211195

RESUMEN

Chromobacterium violaceum is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome bd that protects C. violaceum against multiple stresses. The two subunits of this cytochrome bd (CioAB) are encoded by the cioRAB operon, which also encodes a GbsR-type MarR family transcription factor (CioR). A Δ cioAB mutant strain was sensitive to iron and the iron-requiring antibiotic streptonigrin and showed a decrease in siderophore production. Growth curves and survival assays revealed that the Δ cioAB strain was also sensitive to zinc, hydrogen peroxide, nitric oxide, sulfide, and cyanide. Expression analysis showed that the promoter activity of the cioRAB operon and the transcript levels of the cioAB genes were increased in a Δ cioR mutant. CioR bound the promoter region of the cio operon in vitro , indicating that CioR is a direct repressor of its own operon. Expression of the cio operon increased at high cell density and was dependent on the quorum-sensing regulator CviR. As cyanide is also a signal for cio expression, and production of endogenous cyanide is known to be a quorum sensing-regulated trait in C. violaceum , we suggest that CioAB is a cyanide-insensitive terminal oxidase that allow respiration under cyanogenic growth conditions. Our findings indicate that the cytochrome bd CioAB protects C. violaceum against multiple stress agents that are potentially produced endogenously or during interactions with a host. IMPORTANCE: The terminal oxidases of bacterial respiratory chains rely on heme-copper (heme-copper oxidases) or heme (cytochrome bd ) to catalyze reduction of molecular oxygen to water. Chromobacterium violaceum is a facultative anaerobic bacterium that uses oxygen and other electron acceptors for respiration under conditions of varying oxygen availability. The C. violaceum genome encodes multiple respiratory terminal oxidases, but their role and regulation remain unexplored. Here, we demonstrate that CioAB, the single cytochrome bd from C. violaceum , protects this bacterium against multiple stressors that are inhibitors of heme-copper oxidases, including nitric oxide, sulfide, and cyanide. CioAB also confers C. violaceum resistance to iron, zinc, and hydrogen peroxide. This cytochrome bd is encoded by the cioRAB operon, which is under direct repression by the MarR-type regulator CioR. In addition, the cioRAB operon responds to quorum sensing and to cyanide, suggesting a protective mechanism of increasing CioAB in the setting of high endogenous cyanide production.

3.
Front Cell Infect Microbiol ; 12: 873536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646721

RESUMEN

Chromobacterium violaceum is an environmental Gram-negative beta-proteobacterium that causes systemic infections in humans. C. violaceum uses siderophore-based iron acquisition systems to overcome the host-imposed iron limitation, but its capacity to use other iron sources is unknown. In this work, we characterized ChuPRSTUV as a heme utilization system employed by C. violaceum to explore an important iron reservoir in mammalian hosts, free heme and hemoproteins. We demonstrate that the chuPRSTUV genes comprise a Fur-repressed operon that is expressed under iron limitation. The chu operon potentially encodes a small regulatory protein (ChuP), an outer membrane TonB-dependent receptor (ChuR), a heme degradation enzyme (ChuS), and an inner membrane ABC transporter (ChuTUV). Our nutrition growth experiments using C. violaceum chu deletion mutants revealed that, with the exception of chuS, all genes of the chu operon are required for heme and hemoglobin utilization in C. violaceum. The mutant strains without chuP displayed increased siderophore halos on CAS plate assays. Significantly, we demonstrate that ChuP connects heme and siderophore utilization by acting as a positive regulator of chuR and vbuA, which encode the TonB-dependent receptors for the uptake of heme (ChuR) and the siderophore viobactin (VbuA). Our data favor a model of ChuP as a heme-binding post-transcriptional regulator. Moreover, our virulence data in a mice model of acute infection demonstrate that C. violaceum uses both heme and siderophore for iron acquisition during infection, with a preference for siderophores over the Chu heme utilization system.


Asunto(s)
Hemo , Sideróforos , Animales , Chromobacterium , Hemo/metabolismo , Hierro/metabolismo , Mamíferos/metabolismo , Ratones , Sideróforos/metabolismo , Factores de Transcripción , Virulencia
4.
Front Mol Biosci ; 8: 680940, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34169094

RESUMEN

Superbugs are a public health problem, increasing the need of new drugs and strategies to combat them. Our group has previously identified LyeTxI, an antimicrobial peptide isolated from Lycosa erythrognatha spider venom. From LyeTxI, we synthesized and characterized a derived peptide named LyeTxI-b, which has shown significant in vitro and in vivo activity. In this work, we elucidate the interaction of LyeTxI-b with artificial membranes as well as its effects on resistant strains of bacteria in planktonic conditions or biofilms. Isothermal titration calorimetry revealed that LyeTxI-b interacts more rapidly and with higher intensity with artificial vesicles, showing higher affinity to anionic vesicles, when compared to synthetic LyeTxI. In calcein experiments, LyeTxI-b caused greater levels of vesicle cleavage. Both peptides showed antibacterial activity at concentrations of µmol L-1 against 12 different clinically isolated strains, in planktonic conditions, in a concentration-dependent manner. Furthermore, both peptides elicited a dose-dependent production of reactive oxygen species in methicillin-resistant Staphylococcus aureus. In S. aureus biofilm assay, LyeTxI-b was more potent than LyeTxI. However, none of these peptides reduced Escherichia coli biofilms. Our results show LyeTxI-b as a promising drug against clinically resistant strains, being a template for developing new antibiotics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA