Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Rev Genet ; 23(5): 281-297, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34675394

RESUMEN

Research on animal-microbiota interactions has become a central topic in biological sciences because of its relevance to basic eco-evolutionary processes and applied questions in agriculture and health. However, animal hosts and their associated microbial communities are still seldom studied in a systemic fashion. Hologenomics, the integrated study of the genetic features of a eukaryotic host alongside that of its associated microbes, is becoming a feasible - yet still underexploited - approach that overcomes this limitation. Acknowledging the biological and genetic properties of both hosts and microbes, along with the advantages and disadvantages of implemented techniques, is essential for designing optimal studies that enable some of the major questions in biology to be addressed.


Asunto(s)
Microbiota , Animales , Evolución Biológica , Microbiota/genética
2.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34911766

RESUMEN

Invasion rates have increased in the past 100 y irrespective of international conventions. What characterizes a successful invasion event? And how does genetic diversity translate into invasion success? Employing a whole-genome perspective using one of the most successful marine invasive species world-wide as a model, we resolve temporal invasion dynamics during independent invasion events in Eurasia. We reveal complex regionally independent invasion histories including cases of recurrent translocations, time-limited translocations, and stepping-stone range expansions with severe bottlenecks within the same species. Irrespective of these different invasion dynamics, which lead to contrasting patterns of genetic diversity, all nonindigenous populations are similarly successful. This illustrates that genetic diversity, per se, is not necessarily the driving force behind invasion success. Other factors such as propagule pressure and repeated introductions are an important contribution to facilitate successful invasions. This calls into question the dominant paradigm of the genetic paradox of invasions, i.e., the successful establishment of nonindigenous populations with low levels of genetic diversity.


Asunto(s)
Ctenóforos/genética , Variación Genética , Genómica , Distribución Animal , Animales , Ctenóforos/fisiología , Genoma , Especies Introducidas
3.
Genomics ; 115(3): 110629, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100093

RESUMEN

It remains a challenge to obtain the desired phenotypic traits in aquacultural production of Atlantic salmon, and part of the challenge might come from the effect that host-associated microorganisms have on the fish phenotype. To manipulate the microbiota towards the desired host traits, it is critical to understand the factors that shape it. The bacterial gut microbiota composition can vary greatly among fish, even when reared in the same closed system. While such microbiota differences can be linked to diseases, the molecular effect of disease on host-microbiota interactions and the potential involvement of epigenetic factors remain largely unknown. The aim of this study was to investigate the DNA methylation differences associated with a tenacibaculosis outbreak and microbiota displacement in the gut of Atlantic salmon. Using Whole Genome Bisulfite Sequencing (WGBS) of distal gut tissue from 20 salmon, we compared the genome-wide DNA methylation levels between uninfected individuals and sick fish suffering from tenacibaculosis and microbiota displacement. We discovered >19,000 differentially methylated cytosine sites, often located in differentially methylated regions, and aggregated around genes. The 68 genes connected to the most significant regions had functions related to the ulcerous disease such as epor and slc48a1a but also included prkcda and LOC106590732 whose orthologs are linked to microbiota changes in other species. Although the expression level was not analysed, our epigenetic analysis suggests specific genes potentially involved in host-microbiota interactions and more broadly it highlights the value of considering epigenetic factors in efforts to manipulate the microbiota of farmed fish.


Asunto(s)
Microbioma Gastrointestinal , Salmo salar , Epigenómica , Genotipo , Salmo salar/genética , Animales , Intestinos/microbiología , Metilación de ADN , Genoma
4.
Mol Ecol ; 28(9): 2254-2271, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30913324

RESUMEN

Understanding the genetic mechanisms that facilitate adaptive radiation is an important component of evolutionary biology. Here, we genotyped 82 neutral SNPs, seven SNPs in islands of divergence identified in a previous study (island SNPs), and a region of the major histocompatibility complex (MHC) in 32 populations of sockeye salmon to investigate whether conserved genes and genomic regions are involved in adaptive radiation. Populations representing three ecotypes were sampled from seven drainages with differing habitats and colonization histories spanning a range of 2,000 km. We found strong signatures of parallel selection across drainages at the island SNPs and MHC, suggesting that the same loci undergo divergent selection during adaptive radiation. However, patterns of differentiation at most island SNPs and the MHC were not associated with ecotypes, suggesting that these loci are responding differently to a mosaic of selective pressures. Our study provides some of the first evidence that conserved genomic islands may be involved in adaptive divergence of salmon populations. Additionally, our data provide further support for the hypothesis that sockeye salmon inhabiting rivers unconnected to lakes harbour similar genetic diversity across large distances, are likely the ancestral form of the species, and have repeatedly recolonized lake systems as they have become available after glacial recession. Finally, our results highlight the value and importance of validating outlier loci by screening additional populations and regions, a practice that will hopefully become more common in the future.


Asunto(s)
Complejo Mayor de Histocompatibilidad/genética , Polimorfismo de Nucleótido Simple , Salmón/genética , Alaska , Animales , Evolución Biológica , Ecotipo , Genética de Población , Lagos , Ríos , Selección Genética
5.
Mol Ecol ; 26(17): 4509-4522, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28600900

RESUMEN

A whole-genome duplication (WGD) doubles the entire genomic content of a species and is thought to have catalysed adaptive radiation in some polyploid-origin lineages. However, little is known about general consequences of a WGD because gene duplicates (i.e., paralogs) are commonly filtered in genomic studies; such filtering may remove substantial portions of the genome in data sets from polyploid-origin species. We demonstrate a new method that enables genome-wide scans for signatures of selection at both nonduplicated and duplicated loci by taking locus-specific copy number into account. We apply this method to RAD sequence data from different ecotypes of a polyploid-origin salmonid (Oncorhynchus nerka) and reveal signatures of divergent selection that would have been missed if duplicated loci were filtered. We also find conserved signatures of elevated divergence at pairs of homeologous chromosomes with residual tetrasomic inheritance, suggesting that joint evolution of some nondiverged gene duplicates may affect the adaptive potential of these genes. These findings illustrate that including duplicated loci in genomic analyses enables novel insights into the evolutionary consequences of WGDs and local segmental gene duplications.


Asunto(s)
Duplicación de Gen , Genética de Población , Poliploidía , Salmón/genética , Animales , Cromosomas , Ecotipo , Evolución Molecular , Genoma , Selección Genética
6.
Mol Ecol ; 26(2): 554-570, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27864910

RESUMEN

Regions of the genome displaying elevated differentiation (genomic islands of divergence) are thought to play an important role in local adaptation, especially in populations experiencing high gene flow. However, the characteristics of these islands as well as the functional significance of genes located within them remain largely unknown. Here, we used data from thousands of SNPs aligned to a linkage map to investigate genomic islands of divergence in three ecotypes of sockeye salmon (Oncorhynchus nerka) from a single drainage in southwestern Alaska. We found ten islands displaying high differentiation among ecotypes. Conversely, neutral structure observed throughout the rest of the genome was low and not partitioned by ecotype. One island on linkage group So13 was particularly large and contained six SNPs with FST  > 0.14 (average FST of neutral SNPs = 0.01). Functional annotation revealed that the peak of this island contained a nonsynonymous mutation in a gene involved in growth in other species (TULP4). The islands that we discovered were relatively small (80-402 Kb), loci found in islands did not show reduced levels of diversity, and loci in islands displayed slightly elevated linkage disequilibrium. These attributes suggest that the islands discovered here were likely generated by divergence hitchhiking; however, we cannot rule out the possibility that other mechanisms may have produced them. Our results suggest that islands of divergence serve an important role in local adaptation with gene flow and represent a significant advance towards understanding the genetic basis of ecotypic differentiation.


Asunto(s)
Ecotipo , Genética de Población , Islas Genómicas , Salmón/genética , Alaska , Animales , Flujo Génico , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
7.
Mol Ecol ; 25(10): 2117-29, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26939067

RESUMEN

Many plants and animals of polyploid origin are currently enjoying a genomics explosion enabled by modern sequencing and genotyping technologies. However, routine filtering of duplicated loci in most studies using genotyping by sequencing introduces an unacceptable, but often overlooked, bias when detecting selection. Retained duplicates from ancient whole-genome duplications (WGDs) may be found throughout genomes, whereas retained duplicates from recent WGDs are concentrated at distal ends of some chromosome arms. Additionally, segmental duplicates can be found at distal ends or nearly anywhere in a genome. Evidence shows that these duplications facilitate adaptation through one of two pathways: neo-functionalization or increased gene expression. Filtering duplicates removes distal ends of some chromosomes, and distal ends are especially known to harbour adaptively important genes. Thus, filtering of duplicated loci impoverishes the interpretation of genomic data as signals from contiguous duplicated genes are ignored. We review existing strategies to genotype and map duplicated loci; we focus in detail on an overlooked strategy of using gynogenetic haploids (1N) as a part of new genotyping by sequencing studies. We provide guidelines on how to use this haploid strategy for studies on polyploid-origin vertebrates including how it can be used to screen duplicated loci in natural populations. We conclude by discussing areas of research that will benefit from better inclusion of polyploid loci; we particularly stress the sometimes overlooked fact that basing genomic studies on dense maps provides value added in the form of locating and annotating outlier loci or colocating outliers into islands of divergence.


Asunto(s)
Sitios Genéticos , Genética de Población/métodos , Técnicas de Genotipaje/métodos , Poliploidía , Animales , Mapeo Cromosómico , Dosificación de Gen , Genoma , Genotipo , Salmonidae/genética , Análisis de Secuencia de ADN
8.
J Hered ; 107(2): 122-33, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26712859

RESUMEN

Understanding the genetic architecture of phenotypic traits can provide important information about the mechanisms and genomic regions involved in local adaptation and speciation. Here, we used genotyping-by-sequencing and a combination of previously published and newly generated data to construct sex-specific linkage maps for sockeye salmon (Oncorhynchus nerka). We then used the denser female linkage map to conduct quantitative trait locus (QTL) analysis for 4 phenotypic traits in 3 families. The female linkage map consisted of 6322 loci distributed across 29 linkage groups and was 4082 cM long, and the male map contained 2179 loci found on 28 linkage groups and was 2291 cM long. We found 26 QTL: 6 for thermotolerance, 5 for length, 9 for weight, and 6 for condition factor. QTL were distributed nonrandomly across the genome and were often found in hotspots containing multiple QTL for a variety of phenotypic traits. These hotspots may represent adaptively important regions and are excellent candidates for future research. Comparing our results with studies in other salmonids revealed several regions with overlapping QTL for the same phenotypic trait, indicating these regions may be adaptively important across multiple species. Altogether, our study demonstrates the utility of genomic data for investigating the genetic basis of important phenotypic traits. Additionally, the linkage map created here will enable future research on the genetic basis of phenotypic traits in salmon.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Salmón/genética , Análisis de Secuencia de ADN , Animales , Femenino , Ligamiento Genético , Genotipo , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
9.
J Hered ; 106(3): 217-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25838153

RESUMEN

A whole genome duplication occurred in the ancestor of all salmonid fishes some 50-100 million years ago. Early inheritance studies with allozymes indicated that loci in the salmonid genome are inherited disomically in females. However, some pairs of duplicated loci showed patterns of inheritance in males indicating pairing and recombination between homeologous chromosomes. Nearly 20% of loci in the salmonid genome are duplicated and share the same alleles (isoloci), apparently due to homeologous recombination. Half-tetrad analysis revealed that isoloci tend to be telomeric. These results suggested that residual tetrasomic inheritance of isoloci results from homeologous recombination near chromosome ends and that continued disomic inheritance resulted from homologous pairing of centromeric regions. Many current genetic maps of salmonids are based on single nucleotide polymorphisms and microsatellites that are no longer duplicated. Therefore, long sections of chromosomes on these maps are poorly represented, especially telomeric regions. In addition, preferential multivalent pairing of homeologs from the same species in F1 hybrids results in an excess of nonparental gametes (so-called pseudolinkage). We consider how not including duplicated loci has affected our understanding of population and evolutionary genetics of salmonids, and we discuss how incorporating these loci will benefit our understanding of population genomics.


Asunto(s)
Evolución Molecular , Genética de Población , Poliploidía , Salmonidae/genética , Animales , Mapeo Cromosómico , Emparejamiento Cromosómico , Femenino , Duplicación de Gen , Ligamiento Genético , Marcadores Genéticos , Recombinación Homóloga , Masculino
10.
BMC Evol Biol ; 14: 122, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24903056

RESUMEN

BACKGROUND: Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600-800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. RESULTS: Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600-800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. CONCLUSIONS: We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600-800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed.


Asunto(s)
Variación Genética , Lagos , Trucha/genética , Animales , Teorema de Bayes , Dinamarca , Ecosistema , Flujo Genético , Genética de Población , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Densidad de Población
11.
J Hered ; 105(6): 741-51, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25292170

RESUMEN

A species' genetic diversity bears the marks of evolutionary processes that have occurred throughout its history. However, robust detection of selection in wild populations is difficult and often impeded by lack of replicate tests. Here, we investigate selection in pink salmon (Oncorhynchus gorbuscha) using genome scans coupled with inference from a haploid-assisted linkage map. Pink salmon have a strict 2-year semelparous life history which has resulted in temporally isolated (allochronic) lineages that remain sympatric through sharing of spawning habitats in alternate years. The lineages differ in a range of adaptive traits, suggesting different genetic backgrounds. We used genotyping by sequencing of haploids to generate a high-density linkage map with 7035 loci and screened an existing panel of 8036 loci for signatures of selection. The linkage map enabled identification of novel genomic regions displaying signatures of parallel selection shared between lineages. Furthermore, 24 loci demonstrated divergent selection and differences in genetic diversity between lineages, suggesting that adaptation in the 2 lineages has arisen from different pools of standing genetic variation. Findings have implications for understanding asynchronous population abundances as well as predicting future ecosystem impacts from lineage-specific responses to climate change.


Asunto(s)
Adaptación Fisiológica/genética , Ligamiento Genético , Variación Genética , Genética de Población , Salmón/genética , Animales , Mapeo Cromosómico , Cambio Climático , Femenino , Sitios Genéticos , Genotipo , Haploidia , Masculino
12.
Trends Microbiol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38839511

RESUMEN

Recent studies of dynamic interactions between epigenetic modifications of a host organism and the composition or activity of its associated gut microbiota suggest an opportunity for the host to shape its microbiome through epigenetic alterations that lead to changes in gene expression and noncoding RNA activity. We use insights from microbiota-induced epigenetic changes to review the potential of the host to epigenetically regulate its gut microbiome, from which a bidirectional 'epigenome-microbiome axis' emerges. This axis embeds environmentally induced variation, which may influence the adaptive evolution of host-microbe interactions. We furthermore present our perspective on how the epigenome-microbiome axis can be understood and investigated within a holo-omic framework with potential applications in the applied health and food sciences.

13.
Cell Rep Methods ; 4(7): 100820, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986611

RESUMEN

Holo-omics refers to the joint study of non-targeted molecular data layers from host-microbiota systems or holobionts, which is increasingly employed to disentangle the complex interactions between the elements that compose them. We navigate through the generation, analysis, and integration of omics data, focusing on the commonalities and main differences to generate and analyze the various types of omics, with a special focus on optimizing data generation and integration. We advocate for careful generation and distillation of data, followed by independent exploration and analyses of the single omic layers to obtain a better understanding of the study system, before the integration of multiple omic layers in a final model is attempted. We highlight critical decision points to achieve this aim and flag the main challenges to address complex biological questions regarding the integrative study of host-microbiota relationships.


Asunto(s)
Microbiota , Humanos , Metabolómica , Genómica , Proteómica/métodos , Biología Computacional/métodos , Animales , Interacciones Microbiota-Huesped/genética
14.
mSystems ; 9(2): e0104323, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294254

RESUMEN

Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.


Asunto(s)
Infecciones por Cestodos , Microbioma Gastrointestinal , Enfermedades Parasitarias , Salmo salar , Humanos , Animales , Microbioma Gastrointestinal/genética , Acuicultura , Disbiosis/veterinaria
15.
ISME J ; 17(5): 682-692, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36807409

RESUMEN

Understanding the evolutionary relationships between a host and its intestinal resident bacteria can transform how we understand adaptive phenotypic traits. The interplay between hosts and their resident bacteria inevitably affects the intestinal environment and, thereby, the living conditions of both the host and the microbiota. Thereby this co-existence likely influences the fitness of both bacteria and host. Whether this co-existence leads to evolutionary co-diversification in animals is largely unexplored, mainly due to the complexity of the environment and microbial communities and the often low host selection. We present the gut metagenome from wild Atlantic salmon (Salmo salar), a new wild organism model with an intestinal microbiota of low complexity and a well-described population structure, making it well-suited for investigating co-evolution. Our data reveal a strong host selection of a core gut microbiota dominated by a single Mycoplasma species. We found a clear co-diversification between the population structure of Atlantic salmon and nucleotide variability of the intestinal Mycoplasma populations conforming to expectations from co-evolution between host and resident bacteria. Our results show that the stable microbiota of Atlantic salmon has evolved with its salmonid host populations while potentially providing adaptive traits to the salmon host populations, including defence mechanisms, biosynthesis of essential amino acids, and metabolism of B vitamins. We highlight Atlantic salmon as a novel model for studying co-evolution between vertebrate hosts and their resident bacteria.


Asunto(s)
Microbioma Gastrointestinal , Salmo salar , Salmonidae , Animales , Bacterias
16.
Mol Ecol ; 21(15): 3686-703, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22694661

RESUMEN

High gene flow is considered the norm for most marine organisms and is expected to limit their ability to adapt to local environments. Few studies have directly compared the patterns of differentiation at neutral and selected gene loci in marine organisms. We analysed a transcriptome-derived panel of 281 SNPs in Atlantic herring (Clupea harengus), a highly migratory small pelagic fish, for elucidating neutral and selected genetic variation among populations and to identify candidate genes for environmental adaptation. We analysed 607 individuals from 18 spawning locations in the northeast Atlantic, including two temperature clines (5-12 °C) and two salinity clines (5-35‰). By combining genome scan and landscape genetic analyses, four genetically distinct groups of herring were identified: Baltic Sea, Baltic-North Sea transition area, North Sea/British Isles and North Atlantic; notably, samples exhibited divergent clustering patterns for neutral and selected loci. We found statistically strong evidence for divergent selection at 16 outlier loci on a global scale, and significant correlations with temperature and salinity at nine loci. On regional scales, we identified two outlier loci with parallel patterns across temperature clines and five loci associated with temperature in the North Sea/North Atlantic. Likewise, we found seven replicated outliers, of which five were significantly associated with low salinity across both salinity clines. Our results reveal a complex pattern of varying spatial genetic variation among outlier loci, likely reflecting adaptations to local environments. In addition to disclosing the fine scale of local adaptation in a highly vagile species, our data emphasize the need to preserve functionally important biodiversity.


Asunto(s)
Ambiente , Peces/genética , Flujo Génico , Polimorfismo de Nucleótido Simple , Transcriptoma , Animales , Océano Atlántico , Análisis por Conglomerados , Sitios Genéticos , Técnicas de Genotipaje , Mar del Norte , Salinidad , Selección Genética , Análisis de Secuencia de ADN , Temperatura
17.
Front Microbiol ; 13: 912806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992720

RESUMEN

Microbiomes provide key ecological functions to their host; however, most host-associated microbiomes are too complicated to allow a model of essential host-microbe-microbe interactions. The intestinal microbiota of salmonids may offer a solution since few dominating species often characterize it. Healthy fish coexist with a mutualistic Mycoplasma sp. species, while stress allows the spread of pathogenic strains, such as Aliivibrio sp. Even after a skin infection, the Mycoplasma does not recover; Aliivibrio sp. often remains the dominant species, or Mycoplasma-Aliivibrio coexistence was occasionally observed. We devised a model involving interactions among the host immune system, Mycoplasma sp. plus a toxin-producing pathogen. Our model embraces a complete microbiota community and is in harmony with experimental results that host-Mycoplasma mutualism prevents the spread of pathogens. Contrary, stress suppresses the host immune system allowing dominance of pathogens, and Mycoplasma does not recover after stress disappears.

18.
mBio ; 13(3): e0067922, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35502903

RESUMEN

The concept of a holobiont, a host organism and its associated microbial communities, encapsulates the vital role the microbiome plays in the normal functioning of its host. Parasitic infections can disrupt this relationship, leading to dysbiosis. However, it is increasingly recognized that multicellular parasites are themselves holobionts. Intestinal parasites share space with the host gut microbiome, creating a system of nested microbiomes within the primary host. However, how the parasite, as a holobiont, interacts with the host holobiont remains unclear, as do the consequences of these interactions for host health. Here, we used 16S amplicon and shotgun metagenomics sequencing to characterize the microbiome of the intestinal cestode Eubothrium and its effect on the gut microbiome of its primary host, Atlantic salmon. Our results indicate that cestode infection is associated with salmon gut dysbiosis by acting as a selective force benefiting putative pathogens and potentially introducing novel bacterial species to the host. Our results suggest that parasitic cestodes may themselves be holobionts nested within the microbial community of their holobiont host, emphasizing the importance of also considering microbes associated with parasites when studying intestinal parasitic infections. IMPORTANCE The importance of the parasite microbiome is gaining recognition. Of particular concern is understanding how these parasite microbiomes influence host-parasite interactions and parasite interactions with the vertebrate host microbiome as part of a system of nested holobionts. However, there are still relatively few studies focusing on the microbiome of parasitic helminths in general and almost none on cestodes in particular, despite the significant burden of disease caused by these parasites globally. Our study provides insights into a system of significance to the aquaculture industry, cestode infections of Atlantic salmon and, more broadly, expands our general understanding of parasite-microbiome-host interactions and introduces a new element, the microbiome of the parasite itself, which may play a critical role in modulating the host microbiome, and, therefore, the host response, to parasite infection.


Asunto(s)
Cestodos , Microbioma Gastrointestinal , Microbiota , Parásitos , Animales , Bacterias/genética , Cestodos/genética , Disbiosis , Microbioma Gastrointestinal/fisiología
19.
Viruses ; 14(10)2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36298701

RESUMEN

African swine fever virus (ASFV) has become a global threat to the pig production industry and has caused enormous economic losses in many countries in recent years. Peripheral blood mononuclear cells (PBMCs) from pigs infected with ASFV not only express ASFV genes (almost 200 in number) but have altered patterns of host gene expression as well. Both up- and down-regulation of host cell gene expression can be followed using RNAseq on poly(A)+ mRNAs harvested from the PBMCs of pigs collected at different times post-infection. Consistent with the time course of changes in viral gene expression, only few and limited changes in host gene expression were detected at 3 days post-infection (dpi), but by 6 dpi, marked changes in the expression of over 1300 host genes were apparent. This was co-incident with the major increase in viral gene expression. The majority of the changes in host gene expression were up-regulation, but many down-regulated genes were also identified. The patterns of changes in gene expression within the PBMCs detected by RNAseq were similar in each of the four infected pigs. Furthermore, changes in the expression of about twenty selected host genes, known to be important in host defence and inflammatory responses, were confirmed using high-throughput microfluidic qPCR assays.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Leucocitos Mononucleares/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , ARN Mensajero/metabolismo , Transcripción Genética
20.
Anim Microbiome ; 3(1): 30, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879261

RESUMEN

BACKGROUND: Infectious diseases cause significant production losses in aquaculture every year. Since the gut microbiota plays an essential role in regulating the host immune system, health and physiology, altered gut microbiota compositions are often associated with a diseased status. However, few studies have examined the association between disease severity and degree of gut dysbiosis, especially when the gut is not the site of the primary infection. Moreover, there is a lack of knowledge on whether bath treatment with formalin, a disinfectant commonly used in aquaculture to treat external infections, might affect the gut microbiome as a consequence of formalin ingestion. Here we investigate, through 16S rRNA gene metabarcoding, changes in the distal gut microbiota composition of a captive-reared cohort of 80 Atlantic salmon (Salmo salar L.), in consequence of an external bacterial skin infection due to a natural outbreak and subsequent formalin treatment. RESULTS: We identified Tenacibaculum dicentrarchi as the causative disease pathogen and we show that the distal gut of diseased salmon presented a different composition from that of healthy individuals. A new, yet undescribed, Mycoplasma genus characterized the gut of healthy salmon, while in the sick fish we observed an increase in terms of relative abundance of Aliivibrio sp., a strain regarded as opportunistic. We also noticed a positive correlation between fish weight and Mycoplasma sp. relative abundance, potentially indicating a beneficial effect for its host. Moreover, we observed that the gut microbiota of fish treated with formalin was more similar to those of sick fish than healthy ones. CONCLUSIONS: We conclude that external Tenacibaculum infections have the potential of indirectly affecting the host gut microbiota. As such, treatment optimization procedures should account for that. Formalin treatment is not an optimal solution from a holistic perspective, since we observe an altered gut microbiota in the treated fish. We suggest its coupling with a probiotic treatment aimed at re-establishing a healthy community. Lastly, we have observed a positive correlation of Mycoplasma sp. with salmon health and weight, therefore we encourage further investigations towards its potential utilization as a biomarker for monitoring health in salmon and potentially other farmed fish species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA