Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 337: 139377, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37402425

RESUMEN

In this study, the selective adsorption of aromatic compounds on mesoporous MIL-53(Al) was investigated, and followed the order: Biphenyl (Biph) > Triclosan (TCS) > Bisphenol A (BPA) > Pyrogallol (Pyro) > Catechol (Cate) > Phenol (Phen), and exhibited high selectivity toward TCS in binary compounds. In addition to hydrophobicity and hydrogen bonding, π-π interaction/stacking predominated, and more evidently with double benzene rings. TCS-containing halogens could increase π interaction on the benzene rings via forming Cl-π stacking with MIL-53(Al). Moreover, site energy distribution confirmed that complementary adsorption mainly occurred in the Phen/TCS system, as evidenced by ΔQpri (the decreased solid-phase TCS concentration of the primary adsorbate) < Qsec (the solid-phase concentrations of the competitor (Phen)). In contrast, competitive sorption occurred in the BPA/TCS and Biph/TCS systems within 30 min due to ΔQpri = Qsec, followed by substitution adsorption in the BPA/TCS system, but not for the Biph/TCS system, likely attributed to the magnitude of energy gaps (Eg) and bond energy of TCS (1.80 eV, 362 kJ/mol) fallen between BPA (1.74 eV, 332 kJ/mol) and Biph (1.99 eV, 518 kJ/mol) according to the density-functional theory of Gaussian models. Biph with a more stable electronic homeostasis than TCS lead to the occurrence of substitution adsorption in the TCS/BPA system, but not in the TCS/Biph system. This study provides insight into the mechanisms of different aromatic compounds on MIL-53(Al).


Asunto(s)
Benceno , Triclosán , Adsorción , Fenoles/química , Fenol , Triclosán/química , Compuestos de Bencidrilo
2.
Environ Pollut ; 334: 122192, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451591

RESUMEN

Biofilms play a significant role in the biogeochemical processing of organic matter and the environmental fate of emerging pollutants. In this study, we investigated the occurrence and distribution of 32 endocrine-disrupting chemicals (EDCs), including 24 environmental corticosteroids (ECs) and 8 environmental estrogens (EEs), in natural biofilms from the Pearl River system. Their association between biofilms and water and environmental risk were assessed. The ECs and EEs ubiquitously occurred in the biofilms, ranging from <0.61-6.57 ng/g and <0.8-2535 ng/g, respectively. Temporally, there was no obvious variance in either ECs or EEs in the biofilms during the winter and summer, and their concentrations exhibited a spatial trend of upward to midstream, descending downstream, and then seaward attenuation at the estuary. For ECs and EEs, the similar levels of field-derived bioconcentration factors (BCFs) (logarithm values: 2.42-2.86 and 2.72-2.98, respectively) and biofilm organic carbon-normalized partitioning coefficients (Kboc) (3.39-3.69 and 3.35-3.95) suggest the comparable potential of accumulation and sorption by biofilms between these two classes of EDCs. In addition, higher values of BCF and Kboc for the EEs were found in winter and were correspondingly comparable to their distribution coefficients (Kd) and Koc derived from suspended particles and sediment, revealing that biofilms are a competitive environmental compartment for capturing EDCs, particularly during the mature period. A positive logKboc-logKow relationship suggests hydrophobic partitioning as a primary interaction mechanism between the biofilm and EEs. Moreover, high risks from biofilm-associated ECs and EEs might have posed to the fluvial ecosystem. This study provides original insights into the occurrence, fate, and risk of ECs in natural biofilms for the first time and demonstrates that biofilms may not only serve as reservoirs but also serve as sentinels for fluvial EDC contamination. These results contribute to the further understanding of the behavior and fate of EDCs in aquatic environments.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Estrógenos , Prevalencia , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Corticoesteroides , Disruptores Endocrinos/análisis , Biopelículas , China
3.
Sci Total Environ ; 884: 163701, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37105482

RESUMEN

Suspended particulate matter (SPM) plays an important role in the geochemical behavior and fate of organic micropollutants in aquatic environments. However, the presence of trace emerging endocrine disruptors such as environmental corticosteroids (ECs) in SPM is less well understood. This study focused on the occurrence, distribution, and partitioning of SPM-associated ECs in the Pearl River system, China. Ubiquitous particulate ECs were found in the surface water of the rivers at average concentrations (dry weight) between 0.46 ng/g (flumethasone) and 8.83 ng/g (clobetasone butyrate). The total EC (∑ECs) concentrations of the 24 selected target compounds varied from <1.03 ng/g to 62.3 ng/g, with an average and median of 17.6 ng/g and 13.7 ng/g, respectively. Higher SPM-bound EC levels were commonly observed in winter (dry season), and spatially, their relatively high contamination in urban tributary networks decreased while flowing to mainstreams and then gradually attenuated from upstream to the estuary. Despite the approximately 90 % mass distribution of ∑ECs in the aqueous phase, approximately 50 % of their effect burden was derived from the suspended particulate fractions. For the first time, in situ SPM-water partitioning coefficients (Kp) and their organic carbon-normalized ones (Koc) of ECs were determined in surface waters, and a field-derived preliminary linear equation was proposed to estimate Koc for ECs using basic physicochemical parameters n-octanol/water partitioning coefficient (Kow), which is of importance with regard to the assessment of transport, fate, and risk of these emerging hazardous chemicals. Furthermore, the significant logKoc-logKow relationship for ECs reveals that nonspecific hydrophobic partitioning is a major association mechanism between SPM and ECs. Moreover, hydrogen bonding is suggested to be a prevailing specific binding mechanism and provides more contribution to nonhydrophobic interactions between ECs and particulate organic matter than environmental estrogens.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Material Particulado/análisis , Corticoesteroides , Agua , China , Polvo , Monitoreo del Ambiente , Sedimentos Geológicos/química
4.
Se Pu ; 40(2): 165-174, 2022 Feb 08.
Artículo en Zh | MEDLINE | ID: mdl-35080163

RESUMEN

Corticosteroids (CSs) are widely used to treat various inflammatory and immune diseases in humans and animals, such as arthritis and lupus. Thus far, CSs have been frequently detected in diverse pollution sources, such as in the influent and effluent of traditional wastewater treatment plants, livestock farms, and aquaculture. Owing to incomplete removal or limited treatment, CSs can enter the water environment and eventually be adsorbed in the sediment. Due to hydrodynamic effects, CSs can re-enter the surface water through the resuspension of sediments, and pose a hazard to the ecosystem and human health via the enrichment of aquatic organisms and transmission through the food chain. Therefore, trace analysis of CSs in sediments is significant for exploring their prevalence and behavior in multiple environments. However, existing research mainly focuses on the determination of glucocorticoids in water samples, and studies on the systematic quantitative analysis of CSs in environmental solid samples with more complex matrices are scarce. Moreover, majority of previous investigations focused on a limited number of glucocorticoids, making it important to widen the range of target compounds to be studied, including mineralocorticoids. In this study, the main factors which could influence the accuracy and sensitivity in the determination of 24 target CSs were systematically optimized in the sample pretreatment and instrument analysis. A novel method based on ultrasonic extraction coupled with solid phase extraction (SPE) for sample pretreatment was developed for the simultaneous determination of the 24 CSs in sediments using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sediment sample was ground to homogenize the particle sizes after freeze-drying. The analytes from 2.0 g of the sample were ultrasonicated and extracted with methanol-acetone (1∶1, v/v). After concentrating and diluting each extract, SPE was performed. The water sample was extracted and purified using hydrophile-lipophile balance (HLB) cartridges, following which the extract was further purified with LC-NH2 cartridges. The extracts were concentrated using a rotary evaporator, dried under a gentle stream of nitrogen, and re-dissolved in methanol for instrumental analysis. Chromatographic separation was conducted on an Agilent ZORBAX Eclipse Plus C8 column (100 mm×2.1 mm, 1.8 µm), with a column flow rate of 0.3 mL/min and a gradient of mobile phases A (water with 0.1% acetic acid) and B (acetonitrile). The column temperature was set to 30 ℃ and the injection volume was fixed at 5 µL. Electrospray ionization MS in the dynamic multiple reaction monitoring (DMRM) and selected ion monitoring (SIM) modes were performed in the positive mode for the qualitative and quantitative analysis of the target compounds. Quantitation of the target compounds was carried out using the internal standard method. The effects of different extraction solvents, purification conditions, and MS conditions on the recoveries of the target compounds were investigated. The limits of detection (LODs) (S/N≥3) and limits of quantification (LOQs) (S/N≥10) of all 24 compounds were in the ranges of 0.14-1.25 µg/kg and 0.26-2.26 µg/kg, respectively. The correlation coefficients of linear calibration curves were higher than 0.995 in the range of 1.0-100 µg/L. The recoveries of the 24 CSs at 5, 20, and 50 µg/kg spiked levels ranged from 64.9% to 125.1% with relative standard deviations of 0.4%-12.6% (n=5). The developed method was applied to analyze the CSs in three sediment samples from the rivers of the Pearl River Delta. In all, 11 target compounds were detected in these samples, with contents in the range of 1.25-29.38 µg/kg. The characteristic of this method is efficient, sensitive, reliable, and suitable for the trace determination of varieties of natural and synthesized CSs in environmental sediments.


Asunto(s)
Espectrometría de Masas en Tándem , Ultrasonido , Corticoesteroides , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Ecosistema , Humanos , Extracción Líquido-Líquido , Extracción en Fase Sólida
5.
Sci Total Environ ; 769: 144570, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486178

RESUMEN

The ever-increasing use of synthetic hormones, especially progestins, for medical applications has drawn growing concerns due to their potential endocrine disrupting effects that may diminish the reproductive outputs of aquatic organisms. Using mosquitofish (Gambusia affinis) as a model species, we tested whether gestodene (GES), a commonly used progestin, can alter the expressions of genes associated with sex hormone synthesis and cause ensuing changes in morphological features, courtship behaviour and oocyte development. After exposing to GES at environmentally relevant concentrations (2.96, 32.9 and 354 ng L-1) for 40 days, we found that GES, especially at 354 ng L-1, induced masculinization of female fish, indicated by the reduced body weight to length ratio and development of gonopodia (i.e. anal fins of male fish). Thus, the males showed less intimacy and mating interest towards the GES-exposed females, indicated by the reduced time spent on attending, following and mating behaviours. While oocyte development was seemingly unaffected by GES, spermatogonia were developed in the ovary. All the aforementioned masculinizing effects of GES were associated with the increased testosterone level and decreased estradiol level, driven by upregulating androgen receptor genes (Arα and Arß). Overall, our findings suggest that progestins could undermine the reproductive potential of aquatic organisms and hence their persistence in the progestin-contaminated environment.


Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Animales , Cortejo , Ciprinodontiformes/genética , Femenino , Expresión Génica , Hormonas Esteroides Gonadales , Masculino , Norpregnenos , Ovario , Progesterona
6.
Sci Total Environ ; 706: 135693, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31791762

RESUMEN

We investigated the occurrence and distribution of 24 selected corticosteroids (CSs) in the surface water of the Zhujiang River (ZR) system in Guangzhou, a highly urbanized river system receiving both treated and untreated municipal wastewater effluents. Twenty-two and sixteen CSs were detected in the tributaries and the main stream of the ZR system, and their concentrations ranged from less than the method quantification limit (fluticasone propionate) to 94 ng/L (clobetasone butyrate) and from 0.24 ng/L (cortisol) to 7.2 ng/L (clobetasone butyrate), respectively. We observed higher total CSs (∑CSs) concentrations in the tributaries (11-396 ng/L) relative to the main stream (5.5-33 ng/L) due to their proximity to densely populated residential areas. ∑CSs concentrations in the dry season were generally higher than those in the wet season due to low dilution from decreased river discharge. Principal component analysis and multiple linear regression analysis identified untreated domestic sewage to be the dominant source of CSs (t2, contribution rate: 42.7%) in the urban rivers. Additional source contributions were from naturally attenuated treated and/or raw sewage (t1, 21.5%) and effluents from wastewater treatment plants (t3, 26.7%). CSs contribution was dominated by t2 in the dry season, and the contributions from t1, t2, and t3 showed no significant difference in the wet season. Risk assessment inferred that the ZR system is at medium to high ecological risk from CSs and is therefore a potential threat to the health of aquatic ecosystems. To prevent CSs pollution, our results demonstrate the need to develop effective control strategies to minimize the discharge of untreated waste to nearby rivers and to improve the capacity of wastewater treatment plants in Guangzhou. Further, we demonstrate that the concentrations of cortisone and fludrocortisone acetate are effective chemical indicators to estimate the level of natural and synthetic CSs contamination in urban rivers.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Corticoesteroides , China , Contaminantes Químicos del Agua
7.
Environ Pollut ; 251: 102-109, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31071626

RESUMEN

The occurrence, spatiotemporal distribution, and potential risks of 21 glucocorticoids (GCs) and 3 mineralocorticoids (MCs) in four rivers were studied by investigating the surface waters from the Pearl River Delta (PRD), South China. These environmental corticosteroids (ECs) were commonly present in the river surface waters with average concentrations varying from <0.17 ng/L for fluticasone propionate to 5.6 ng/L for clobetasone butyrate; and cortisone had the highest concentration, 32.9 ng/L. The total ECs ranged in concentration from undetectable to 83.3 ng/L, with a mean and median of 8.1 ng/L and 4.8 ng/L, respectively. Spatially the total EC concentration levels in the Pearl River system occurred in the following order: Zhujiang River (ZR) > Dongjiang River (DR) > Shiziyang waterway (SW) > Beijiang River (BR). These levels generally demonstrated a trend of increasing from upstream to midstream or downstream then attenuating toward the estuary. Considerable seasonal variations in the ECs differed among rivers. Higher ECs concentrations in winter were mostly found in the ZR, whereas lower levels were found in the DR. Moreover, the temporal variations of the ECs were marginal in the BR and SW. These spatiotemporal distributions of the ECs might have been simultaneously influenced by pollution sources derived from anthropogenic activities and river hydrologic conditions. Correlation analyses indicated that dissolved organic carbon (DOC) could play a key role in the occurrence and distribution of ECs in an aquatic environment. Risk assessment demonstrated that the occurrence of ECs might have posed medium to high risk to aquatic organisms in the Pearl River.


Asunto(s)
Corticoesteroides/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos , China , Estuarios , Agua Dulce , Medición de Riesgo , Ríos
8.
Se Pu ; 36(11): 1158-1166, 2018 Nov 01.
Artículo en Zh | MEDLINE | ID: mdl-30378379

RESUMEN

A comprehensive analytical method was developed for simultaneous determination of 28 corticosteroids in surface water based on ultra-high performance liquid chromatography- electrospray tandem mass spectrometry (UHPLC-ESI-MS/MS). The solid-phase extraction was performed using hydrophilic-lipophilic balance (HLB) cartridges, and the chromatographic separation was achieved on a reversed-phase C8 column. Qualitative and quantitative analyses were performed in the dynamic multiple reaction monitoring (DMRM) mode using positive and negative electrospray ionization (ESI±). The 28 target compounds were quantified by the internal standard method. Good linear relationships were obtained (R2>0.99) for the 28 analytes in the concentration range of 1.0-100 µg/L. The method limits of detection and quantification were in the range of 0.21-0.48 ng/L and 0.32-0.72 ng/L, respectively. When the matrix spiking levels were at 5.0, 10, and 50 ng/L, the average recoveries for the target compounds ranged from 68.6% to 108.7%, and the relative standard deviations (RSDs) were between 0.1% and 8.1%. Because of its high sensitivity, good precision, and reliability, this method can be widely applied to trace monitoring of glucocorticoids and mineral ocorticoids for investigating their behaviors and risks of corticosteroids in the environment.


Asunto(s)
Glucocorticoides/análisis , Contaminantes Químicos del Agua/análisis , Agua/análisis , Cromatografía Líquida de Alta Presión , Reproducibilidad de los Resultados , Extracción en Fase Sólida , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA