Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Environ Res ; 215(Pt 1): 114323, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36115419

RESUMEN

Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.


Asunto(s)
COVID-19 , Cupriavidus necator , Residuos Sanitarios , Eliminación de Residuos , Biopolímeros , Cupriavidus necator/metabolismo , Fermentación , Alimentos , Combustibles Fósiles , Humanos , Hidroxibutiratos , Ácidos Pentanoicos , Plásticos , Poliésteres , Valeratos
2.
Int J Mol Sci ; 20(13)2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288425

RESUMEN

Cellulosomes are an extracellular supramolecular multienzyme complex that can efficiently degrade cellulose and hemicelluloses in plant cell walls. The structural and unique subunit arrangement of cellulosomes can promote its adhesion to the insoluble substrates, thus providing individual microbial cells with a direct competence in the utilization of cellulosic biomass. Significant progress has been achieved in revealing the structures and functions of cellulosomes, but a knowledge gap still exists in understanding the interaction between cellulosome and lignocellulosic substrate for those derived from biorefinery pretreatment of agricultural crops. The cellulosomic saccharification of lignocellulose is affected by various substrate-related physical and chemical factors, including native (untreated) wood lignin content, the extent of lignin and xylan removal by pretreatment, lignin structure, substrate size, and of course substrate pore surface area or substrate accessibility to cellulose. Herein, we summarize the cellulosome structure, substrate-related factors, and regulatory mechanisms in the host cells. We discuss the latest advances in specific strategies of cellulosome-induced hydrolysis, which can function in the reaction kinetics and the overall progress of biorefineries based on lignocellulosic feedstocks.


Asunto(s)
Celulosomas/química , Lignina/química , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Celulosomas/metabolismo , Hidrólisis , Filogenia , Unión Proteica , ARN Ribosómico 16S , Especificidad por Sustrato
3.
Metab Eng ; 42: 126-133, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28627452

RESUMEN

Yarrowia lipolytica is considered as a potential candidate for succinic acid production because of its innate ability to accumulate citric acid cycle intermediates and its tolerance to acidic pH. Previously, a succinate-production strain was obtained through the deletion of succinate dehydrogenase subunit encoding gene Ylsdh5. However, the accumulation of by-product acetate limited further improvement of succinate production. Meanwhile, additional pH adjustment procedure increased the downstream cost in industrial application. In this study, we identified for the first time that acetic acid overflow is caused by CoA-transfer reaction from acetyl-CoA to succinate in mitochondria rather than pyruvate decarboxylation reaction in SDH negative Y. lipolytica. The deletion of CoA-transferase gene Ylach eliminated acetic acid formation and improved succinic acid production and the cell growth. We then analyzed the effect of overexpressing the key enzymes of oxidative TCA, reductive carboxylation and glyoxylate bypass on succinic acid yield and by-products formation. The best strain with phosphoenolpyruvate carboxykinase (ScPCK) from Saccharomyces cerevisiae and endogenous succinyl-CoA synthase beta subunit (YlSCS2) overexpression improved succinic acid titer by 4.3-fold. In fed-batch fermentation, this strain produced 110.7g/L succinic acid with a yield of 0.53g/g glycerol without pH control. This is the highest succinic acid titer achieved at low pH by yeast reported worldwide, to date, using defined media. This study not only revealed the mechanism of acetic acid overflow in SDH negative Y. lipolytica, but it also reported the development of an efficient succinic acid production strain with great industrial prospects.


Asunto(s)
Glicerol/metabolismo , Ingeniería Metabólica , Ácido Succínico/metabolismo , Yarrowia/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Ciclo del Ácido Cítrico/genética , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Concentración de Iones de Hidrógeno , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Yarrowia/genética
4.
J Ind Microbiol Biotechnol ; 42(9): 1255-62, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26153503

RESUMEN

Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or ß-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients.


Asunto(s)
Aciltransferasas/biosíntesis , Proteínas Bacterianas/biosíntesis , Polihidroxialcanoatos/biosíntesis , Yarrowia/genética , Aciltransferasas/genética , Proteínas Bacterianas/genética , Ingeniería Genética , Ácido Oléico/metabolismo , Pseudomonas aeruginosa/enzimología , Trioleína/metabolismo , Yarrowia/metabolismo
5.
Chem Soc Rev ; 43(8): 2587-627, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24424298

RESUMEN

The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.


Asunto(s)
Biopolímeros/metabolismo , Residuos Industriales/análisis , Polihidroxialcanoatos/metabolismo , Ácido Succínico/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biocombustibles/microbiología , Biopolímeros/química , Reactores Biológicos/microbiología , Celulosa/química , Celulosa/metabolismo , Residuos Industriales/economía , Polihidroxialcanoatos/química , Ácido Succínico/química
6.
Int J Mol Sci ; 16(3): 4362-71, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25809602

RESUMEN

Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification. However, biodiesel obtained from vegetable oils as feedstock is expensive. Thus, an alternative and inexpensive feedstock such as waste cooking oil (WCO) can be used as feedstock for biodiesel production. In this project, techno-economic analyses were performed on the biodiesel production in Hong Kong using WCO as a feedstock. Three different catalysts such as acid, base, and lipase were evaluated for the biodiesel production from WCO. These economic analyses were then compared to determine the most cost-effective method for the biodiesel production. The internal rate of return (IRR) sensitivity analyses on the WCO price and biodiesel price variation are performed. Acid was found to be the most cost-effective catalyst for the biodiesel production; whereas, lipase was the most expensive catalyst for biodiesel production. In the IRR sensitivity analyses, the acid catalyst can also acquire acceptable IRR despite the variation of the WCO and biodiesel prices.


Asunto(s)
Biocombustibles/economía , Residuos/economía , Análisis Costo-Beneficio , Hong Kong , Aceites de Plantas/economía
7.
Biotechnol Adv ; 74: 108392, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825214

RESUMEN

Astaxanthin is a valuable orange-red carotenoid with wide applications in agriculture, food, cosmetics, pharmaceuticals and nutraceuticals areas. At present, the biological synthesis of astaxanthin mainly relies on Haematococcus pluvialis and Xanthophyllomyces dendrorhous. With the rapid development of synthetic biology, more recombinant microbial hosts have been genetically constructed for astaxanthin production including Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica. As multiple genes (15) were involved in the astaxanthin synthesis, it is particularly important to adopt different strategies to balance the metabolic flow towards the astaxanthin synthesis. Furthermore, astaxanthin is a fat-soluble compound stored intracellularly, hence efficient extraction methods are also essential for the economical production of astaxanthin. Several efficient and green extraction methods of astaxanthin have been reported in recent years, including the superfluid extraction, ionic liquid extraction and microwave-assisted extraction. Accordingly, this review will comprehensively introduce the advances on the astaxanthin production and extraction by using different microbial hosts and strategies to improve the astaxanthin synthesis and extraction efficiency.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Xantófilas , Xantófilas/aislamiento & purificación , Escherichia coli/metabolismo , Escherichia coli/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Yarrowia/metabolismo , Yarrowia/genética , Microondas
8.
Biodes Res ; 6: 0044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149577

RESUMEN

The pretreatment of lignocellulosic biomass with acid generates phenolic and furanyl compounds that function as toxins by inhibiting microbial growth and metabolism. Therefore, it is necessary to detoxify acid-pretreated lignocellulosic biomass for better utilization. Among the various detoxification methods that are available, biodetoxification offers advantages that include mild reaction conditions and low energy consumption. In this study, a newly isolated Rhodococcus aetherivorans strain, N1, was found to effectively degrade various lignin-derived aromatic compounds, such as p-coumarate, ferulate, syringaldehyde, furfural, and 5-hydroxymethylfurfural. Furthermore, the metabolic pathway and genes responsible for this degradation were also identified. In addition, the overexpression of a demethylase (DesA) and 3,4-dioxygenase (DesZ) in strain N1 generated a recombinant strain, N1-S, which showed an enhanced ability to degrade syringaldehyde and 80.5% furfural, 50.7% 5-hydroxymethylfurfural, and 71.5% phenolic compounds in corn cob hydrolysate. The resulting detoxified hydrolysate was used directly as a feedstock for succinate production by Escherichia coli suc260. This afforded 35.3 g/l succinate, which was 6.5 times greater than the concentration afforded when nondetoxified hydrolysate was used. Overall, the results of this study demonstrate that strain N1-S is a valuable microbe for the biodetoxification of lignocellulosic biomass.

9.
Environ Pollut ; 344: 123387, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242308

RESUMEN

This communication explores the intricate relationship between food waste and climate change, considering aspects such as impacts, projections, and emissions. It focuses on the pressing issue of waste generation and its potential consequences if current trends persist, and emphasises the importance of efficient solid waste management in improving environmental quality and fostering economic development. It also highlights the challenges faced by developing countries in waste collection and disposal, drawing comparisons with the waste utilisation methods used by developed nations. The review delves into the link between food waste and climate change, noting the paradoxical situation of food wastage against the backdrop of global hunger and malnutrition. It underscores the scientific evidence connecting food waste to climate change and its implications for food security and climate systems. Additionally, it examines the environmental burden imposed by food waste, including its contribution to greenhouse gas emissions and the depletion of resources such as energy, water, and land. Besides environmental concerns, this communication also highlights the ethical and socioeconomic dimensions of food waste, discussing its influence on Sustainable Development Goals, poverty, and social inequality. The communication concludes by advocating for collective action and the development of successful mitigation strategies, technological solutions, and policy interventions to address food waste and its climate impacts. It emphasises the need for collaboration, awareness, and informed decision-making to ensure a more sustainable and equitable future.


Asunto(s)
Cambio Climático , Eliminación de Residuos , Alimentos , Alimento Perdido y Desperdiciado , Uniones Comunicantes
10.
Chemosphere ; 351: 141208, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219986

RESUMEN

Plastics are indispensable in modern society but also pose a persistent threat to the environment. In particular, microplastics (MPs) have a substantial environmental impact on ecosystems. Municipal solid waste landfill leachates are a source of MPs, but leakage of MPs from leachates has only been reported in a few studies. As a modern city, Hong Kong has a remarkably high population density and a massive plastic waste generation. However, it depends on conventional landfilling for plastic waste management and traditional thermal ammonia stripping for leachate treatment. Yet, the MP leakage from landfill leachates in Hong Kong has not been disclosed. This is the first study that aimed to identify, quantify, and characterise MPs in raw and treated leachates, respectively, from major landfill sites in Hong Kong. The concentrations of MPs varied from 49.0 ± 24.3 to 507.6 ± 37.3 items/L among the raw leachate samples, and a potential correlation was found between the concentration of MPs in the raw leachate sample from a given landfill site and the annual leachate generation of the site. Most MPs were 100-500 µm fragments or filaments and were transparent or yellow. Regarding the polymeric materials among the identified MPs, poly(ethylene terephthalate) and polyethylene were the most abundant types, comprising 45.30% and 21.37% of MPs, respectively. Interestingly, leachates treated by ammonia stripping contained higher concentrations of MPs than raw leachate samples, which demonstrated that the traditional treatment process may not be sufficient regarding the removal of emerging pollutants, such as MPs. Overall, our findings provide a more comprehensive picture of the pollution of MPs in landfill leachates in Hong Kong and highlight the urgent need for adopting the consideration of MPs into the conventional mindset of waste management systems in Hong Kong.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Hong Kong , Amoníaco , Ecosistema , Instalaciones de Eliminación de Residuos , China
11.
Biotechnol Biofuels Bioprod ; 17(1): 80, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877488

RESUMEN

To increase the production of biomass and astaxanthin from Haematococcus pluvialis to meet the high market demand for astaxanthin, this study recruited two typical and negligible phytohormones (namely resveratrol and catechol) for the stepwise treatments of H. pluvialis. It was found that the hybrid and sequential treatments of resveratrol (200 µmol) and catechol (100 µmol) had achieved the maximum astaxanthin content at 33.96 mg/L and 42.99 mg/L, respectively. Compared with the hybrid treatment, the physiological data of H. pluvialis using the sequential strategy revealed that the enhanced photosynthetic performance via the Calvin cycle by RuBisCO improved the biomass accumulation during the macrozooid stage; meanwhile, the excessive ROS production had occurred to enhance astaxanthin production with the help of NADPH overproduction during the hematocyst stage. Overall, this study provides improved knowledge of the impacts of phytohormones in improving biomass and astaxanthin of H. pluvialis, which shed valuable insights for advancing microalgae-based biorefinery.

12.
Front Chem ; 12: 1327113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38312346

RESUMEN

Biosurfactants have garnered increased attention lately due to their superiority of their properties over fossil-derived counterparts. While the cost of production remains a significant hurdle to surpass synthetic surfactants, biosurfactants have been anticipated to gain a larger market share in the coming decades. Among these, glycolipids, a type of low-molecular-weight biosurfactant, stand out for their efficacy in reducing surface and interfacial tension, which made them highly sought-after for various surfactant-related applications. Glycolipids are composed of hydrophilic carbohydrate moieties linked to hydrophobic fatty acid chains through ester bonds that mainly include rhamnolipids, trehalose lipids, sophorolipids, and mannosylerythritol lipids. This review highlights the current landscape of glycolipids and covers specific glycolipid productivity and the diverse range of products found in the global market. Applications such as bioremediation, food processing, petroleum refining, biomedical uses, and increasing agriculture output have been discussed. Additionally, the latest advancements in production cost reduction for glycolipid and the challenges of utilizing second-generation feedstocks for sustainable production are also thoroughly examined. Overall, this review proposes a balance between environmental advantages, economic viability, and societal benefits through the optimized integration of secondary feedstocks in biosurfactant production.

13.
Bioresour Technol ; 401: 130708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636878

RESUMEN

In this study, the biochemical response of Phaeodactylum tricornutum to varying concentrations of inorganic selenium (Se) was investigated. It was observed that, when combined with fulvic acid, P. tricornutum exhibited enhanced uptake and biotransformation of inorganic Se, as well as increased microalgal lipid biosynthesis. Notably, when subjected to moderate (5 and 10 mg/L) and high (20 and 40 mg/L) concentrations of selenite under fulvic acid treatment, there was a discernible redirection of carbon flux towards lipogenesis and protein biosynthesis from carbohydrates. In addition, the key parameters of microalgae-based biofuels aligned with the necessary criteria outlined in biofuel regulations. Furthermore, the Se removal capabilities of P. tricornutum, assisted by fulvic acid, were coupled with the accumulation of substantial amounts of organic Se, specifically SeCys. These findings present a viable and successful approach to establish a microalgae-based system for Se uptake and biotransformation.


Asunto(s)
Benzopiranos , Biocombustibles , Biotransformación , Diatomeas , Diatomeas/metabolismo , Benzopiranos/metabolismo , Ácido Selenioso/metabolismo , Microalgas/metabolismo
14.
Bioresour Technol ; 390: 129855, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858801

RESUMEN

In recent decades, numerous bioconversion processes and techniques have been developed to utilize lignocellulosic biomass as feedstock in the production of bio-based fuels and materials. However, waste treatment, an important sub-system, is seldom considered in the life cycle assessment of lignocellulose derived products. This study comprehensively investigated the environmental impacts of bioethanol and electricity cogeneration from sugarcane bagasse, with a focus on recycling techniques adopted in waste treatment. A life cycle assessment indicated that high recycle rate of black liquor, acid and waste washing water can substantially reduce the consumption of fresh water, related chemicals and energy by 70-80%. Environmental impacts relating to global warming, acidification potential and primary energy demand can be decreased by 5-10 times or even entirely eliminated. These study outcomes demonstrate significant environmental benefits of integrating waste recycling techniques into lignocellulose biorefinery process, providing a solid foundation for future industrial development.


Asunto(s)
Celulosa , Saccharum , Animales , Lignina , Reciclaje , Estadios del Ciclo de Vida
15.
Bioresour Technol ; 379: 128993, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37011850

RESUMEN

Secondary feedstocks, such as food waste (FW), have been used for yeasts (e.g. Starmerella bombicola) to produce sophorolipids (SLs), which are commercially available biosurfactants. However, the quality of FW varies by location and season and may contains chemicals that inhibit SLs production. Therefore, it is crucial to identify such inhibitors and, if possible, remove them, to ensure efficient utilization. In this study, large scale FW was first analysed to determine the concentration of potential inhibitors. Lacticacid, acetic acid and ethanol were identified and found to be inhibitors of the growth of S. bombicola and its SLs production. Various methods were then evaluated for their ability to remove these inhibitors. Finally, a simple and effective strategy for removing inhibitors from FW was developed that complied with the 12 principles of green chemistry and could be adopted by industry for high SLs production.


Asunto(s)
Eliminación de Residuos , Saccharomycetales , Alimentos , Glucolípidos
16.
Bioresour Technol ; 387: 129611, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541549

RESUMEN

The scarcity of natural fossil fuels presents a promising opportunity for the development of renewable microalgae-based biofuels. However, the current microalgae cultivation is unable to effectively address the high costs of the production of biofuels. To tackle this challenge, this study focused on recruiting engineered Phaeodactylum tricornutum (FabG-OE) to enhance biomass accumulation and lipid production by employing food waste hydrolysate under temperature variations. The biomass and lipid accumulations of FabG-OE were improved effectively in mixed culture medium and food waste hydrolysate at a volume ratio (v/v) of 80:20 at 30 °C. It was found that oxidative stress might contribute to the overexpression of lipogenic genes, thereby leading to lipogenesis at 30 °C. Upscaling cultivation of FabG-OE at 30 °C using a semi-continuous strategy and batch strategy was conducted to achieve 0.73 and 0.77 g/L/d of biomass containing 0.35 and 0.38 g/L/d of lipid, respectively. In summary, these findings provide valuable insights for advancing microalgae-based biofuel production.


Asunto(s)
Diatomeas , Microalgas , Eliminación de Residuos , Alimentos , Biocombustibles , Temperatura , Nutrientes , Biomasa , Lípidos
17.
Bioresour Technol ; 390: 129858, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863332

RESUMEN

Food waste biorefinery is a sustainable approach to producing green chemicals, however the essential substrate-related factors hindering the efficacy of enzymatic hydrolysis have never been clarified. This study explored the key rate-limiting parameters and mechanisms of carbohydrate-rich food after different cooking and storing methods, i.e., impacts of compositions, structural diversities, and hornification. Shake-flask enzymatic kinetics determined the optimal dosages (0.5 wt% glucoamylase, 3 wt% cellulase) for food waste hydrolysis. First order kinetics and simulation results determined that reaction coefficient (K) of cooked starchy food was âˆ¼ 3.63 h-1 (92 % amylum digestibility) within 2 h, while those for cooked cellulosic vegetables were 0.25-0.5 h-1 after 12 h of hydrolysis. Drying and frying reduced âˆ¼ 71-89 % hydrolysis rates for rice, while hydrothermal pretreatment increased the hydrolysis rate by 82 % on vegetable wastes. This study provided insights into advanced control strategy and reduced the operational costs by optimized enzyme doses for food waste valorization.


Asunto(s)
Celulasa , Eliminación de Residuos , Cinética , Carbohidratos , Verduras/metabolismo , Almidón , Hidrólisis , Celulasa/metabolismo
18.
Bioresour Technol ; 390: 129868, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844805

RESUMEN

This study explores the feasibility of using lignosulfonate, a byproduct of the pulp and paper industry, to facilitate sludge anaerobic digestion. Biochemical methane potential assays revealed that the maximum methane production was achieved at 60 mg/g volatile solids (VS) lignosulfonate, 22.18 % higher than the control. One substrate model demonstrated that 60 mg/g VS lignosulfonate boosted the hydrolysis rate, biochemical methane potential, and degradation extent of secondary sludge by 19.12 %, 21.87 %, and 21.11 %, respectively, compared to the control. Mechanisms unveiled that lignosulfonate destroyed sludge stability, promoted organic matter release, and enhanced subsequent hydrolysis, acidification, and methanogenesis by up to 31.30 %, 74.42 % and 28.16 %, respectively. Phytotoxicity assays confirmed that lignosulfonate promoted seed germination and root development of lettuce and Chinese cabbage, with seed germination index reaching 170 ± 10 % and 220 ± 22 %, respectively. The findings suggest that lignosulfonate addition offers a sustainable approach to sludge treatment, guiding effective management practices.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Estudios de Factibilidad , Reactores Biológicos , Metano/metabolismo
19.
Bioresour Technol ; 345: 126564, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34915115

RESUMEN

Phaeodactylum tricornutum, a model alga, is well known for its ability to accumulate intracellular omega-3 eicosapentaenoic acid (EPA). However, P.tricornutum cells need to have a higher EPA content if they are to be used for industrial applications. In this study, an auxin-like supermolecule (SM) was synthesised and used for the cultivation of P. tricornutum. Results show that the addition of 1 ppm of SM significantly increased the P. tricornutum cell density and boosted the P. tricornutum biomass. The experimental group treated with 5 ppm of SM, had an EPA content of 31.7%, which was a 2.09-fold increase over the EPA content in the untreated group. Overall, our results demonstrated that SM can significantly improve the microalgal growth and EPA accumulation in P. tricornutum, providing a feasible strategy to achieve efficient and cost-effective EPA production.


Asunto(s)
Diatomeas , Microalgas , Biomasa , Ácido Eicosapentaenoico , Ácidos Indolacéticos
20.
Nat Rev Earth Environ ; 3: 736-737, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36573142

RESUMEN

Environmental cycling of microplastics and nanoplastics is complex; fully understanding these pollutants is hindered by inconsistent methodologies and experimentation within a narrow scope. Consistent methods are needed to advance plastic research and policy within the context of global environmental change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA