Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Phys Chem Chem Phys ; 20(36): 23311-23319, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30175352

RESUMEN

Mesophase pitch fabricated through polymerization of polycyclic aromatic hydrocarbons (PAHs) is highly aromatic and of high quality, and it can be used as a raw material to produce other carbon-based materials. Hydrofluoride/boron trifluoride (HF/BF3) is currently an efficient reagent to catalyze the PAH polymerization to produce mesophase pitch. In this study, density functional theory (DFT) calculations are performed to propose a mechanism for naphthalene catalytic polymerization using HF/BF3. The overall reaction mechanism can be conceptualized as having two stages: activation, followed by polymerization. During activation, HF/BF3 acts a proton donor to activate naphthalene, whose then-protonated form can promote the formation of a C-C bond with another naphthalene molecule via electrophilic addition. We also propose a catalyst recovery pathway, which can stabilize the intermediate products. In the polymerization stage, two types of pathways are proposed, those of chain elongation and intramolecular cyclization. According to the proposed catalytic mechanism in this study, the predicted mesophase product shows highly aliphatic hydrogens, which is consistent with the experimental results. We propose the full catalytic mechanism using DFT calculations. Our results provide a better understanding of how to develop novel and green catalysts, which can replace the HF/BF3 reagent in future applications.

2.
Opt Express ; 25(20): 24480-24485, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29041392

RESUMEN

A novel technique is presented for producing micro-hyperboloid lensed fibers for efficient coupling to semiconductor laser chips. A three-step process including a precision mechanical grinding, a spin-on-glass (SOG) coating and an electrostatic pulling process is used to form the hyperboloid lens structure on a flat-end single mold fiber (SMF) with the core diameter of 6.6 µm. Micro-hyperboloid lensed fibers with tunable radii of curvature around 4.18 - 4.83 µm can be formed on the SMF end face. A high average coupling efficiency around 80% and low coupling variation of 0.116 ± 0.044% are obtained for the produced fibers. The developed method is efficient to produce micro-hyperboloid lensed fibers for high-performance light coupling between the SMF and the semiconductor diode lasers.

3.
Materials (Basel) ; 16(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687626

RESUMEN

Ti-based metallic glasses have a high potential for implant applications. The feasibility of a new biocompatible Ti-based bulk metallic glass composite for selective laser melting (SLM) had been examined. Therefore, it is necessary to design a high-glass-forming-ability Ti-based metallic glass (∆Tx = 81 K, γ = 0.427, γm = 0.763), to fabricate a partial glass-formable spherical powder (the volume fraction of the amorphous phase in the atomized Ti-based powders being 73% [size < 25 µm], 61% [25-37 µm], and 50% [37-44 µm]), and establish an SLM parameter (a scan rate of 600 mm/s, a power of 120 W, and an overlap of 10%). The Ti42Zr35Si5Co12.5Sn2.5Ta3 bulk metallic glass composite was successfully fabricated through SLM. This study demonstrates that the TiZrSiCoSnTa system constitutes a promising basis for the additive manufacturing process in terms of preparing biocompatible metallic glass composites into complicated graded foam shapes.

4.
Analyst ; 137(22): 5352-7, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23016153

RESUMEN

This study develops a novel and high performance colorimetric probe for dopamine (DA) detection. Aqueous-phase gold nanoparticles (AuNPs) extracted with 4-(dimethylamino)pyridine (DMAP) from toluene solvent are used as the reaction probes. The original AuNPs of diameter around 13 nm separate into 2-5 nm sizes when dopamine (DA) is added, resulting in the color change of the AuNP solution from red to blackish green. Transmission electron microscopy (TEM) observations and dynamic light scattering (DLS) tests show that the AuNPs break into their smaller sizes right after addition of DA. The results confirm that the DMAP capped AuNPs are etched by the DA molecules due to the strong affinity between DA and AuNPs, thus causing a blue shift in the absorption spectrum. The concentration of DA is quantitatively monitored by using a UV-Vis spectrometer with a limit of detection (LOD) as low as 5 nM. In addition, the results also show that the methods developed appear to have no significant problems in detecting DA in the sample even with the presence of (10 mM) common interferents such as ascorbic acid (AA), homovanillic acid (HVA), catechol (CA) and glutathione (GSH). The developed AuNP etching protocol for dopamine detection provides a novel and versatile approach for rapid biosensing applications.


Asunto(s)
Dopamina/análisis , Oro/química , Nanopartículas del Metal/química , Espectrofotometría Ultravioleta , Ácido Ascórbico/química , Catecoles/química , Óxidos N-Cíclicos/química , Técnicas Electroquímicas , Glutatión/química , Ácido Homovanílico/química , Tolueno/química
5.
Opt Express ; 19(19): 18372-9, 2011 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-21935205

RESUMEN

The optical transmission properties of photonic crystal fibers (PCFs) can be manipulated by modifying the pattern arrangement of the air channels within them. This paper presents a novel MEMS-based technique for modifying the optical transmission properties of commercial photonic-crystal fiber (PCF) by selectively filling the voids within the fiber structure with liquid crystals. In the proposed approach, an un-cured SU-8 ring pattern with a thickness of 5 µm is fabricated using a novel stamping method. The PCF is then brought into contact with the SU-8 pattern and an infra-red (IR) laser beam is passed through the fiber in order to soften the SU-8 surface; thereby selectively sealing some of the air channels with molten SU-8. Liquid crystals (LCs) are then infiltrated into the un-sealed holes in the PCF via capillary effects in order to modify the transmission properties of the PCF. Two selectively-filled PCFs are fabricated, namely an inner-ring LC-PCF and a single-line LC-PCF, respectively. It is shown that the two LC-PCFs exhibit significantly different optical behaviors. The practical applicability of the proposed selective-filling approach is demonstrated by fabricating an electric field sensor. The experimental results show that the sensor has the ability to measure electric fields with an intensity of up to 40 kV/cm.

6.
Opt Express ; 19(23): 22993-8, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22109178

RESUMEN

A novel method is presented for fabricating lensed optical fibers for enhancing the coupling efficiency between high-power IR laser diodes and gradient-index fibers (GIF). SU-8 photoresist is attached to the fiber tip by means of surface tension forces and a cone-shaped micro-lens structure is then formed using an electrostatic pulling method. It is shown that micro-lenses with various radii of curvature can be easily formed by tuning the intensity of the electric field used in the pulling process. Experimental results show that for a laser diode chip with a central wavelength of 1310 nm, a coupling efficiency of 78% can be obtained using a lensed optical fiber with a radius of curvature of 48 µm. By contrast, the coupling efficiency of a traditional flat-end fiber is just 40%. Overall, the fabrication method proposed in this study provides a rapid and low-cost solution for the mass production of high-quality lensed optical fibers.

7.
Food Chem ; 363: 130305, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34144417

RESUMEN

This paper presents a novel thermal desorption probe integrated with the corona-discharged assisted paper-spray mass spectrometry (PS-MS) for rapid detecting the residual pesticides on fruit surfaces. Pesticide detection can be simply achieved by scratching the fruit surface and then placed in front of the inlet of the MS for target pesticides screening. A novel ionization method comprising the electrospray ionization and the corona discharged is generated on the paper tip to simultaneously ionize the pesticide of high and low polarities for MS detection. Six pesticides composed of polar acetamiprid, azoxystobin, pyridaben and low polar chlorfenapyr, pyriproxyden, λ-cyhalothrin are successfully detected in seconds. The results are also validated with the LC-MS/MS and GC-MS/MS spectra performed via the standard protocols by a certificated laboratory of Eurofins Taiwan. The developed method provides a rapid, simple yet efficient way for screening residual pesticides on fruits.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Cromatografía Liquida , Frutas/química , Cromatografía de Gases y Espectrometría de Masas , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
8.
Micromachines (Basel) ; 12(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804190

RESUMEN

Intervertebral fusion surgery for spinal trauma, degeneration, and deformity correction is a major vertebral reconstruction operation. For most cages, the stiffness of the cage is high enough to cause stress concentration, leading to a stress shielding effect between the vertebral bones and the cages. The stress shielding effect affects the outcome after the reconstruction surgery, easily causing damage and leading to a higher risk of reoperation. A porous structure for the spinal fusion cage can effectively reduce the stiffness to obtain more comparative strength for the surrounding tissue. In this study, an intervertebral cage with a porous gradation structure was designed for Ti64ELI alloy powders bonded by the selective laser melting (SLM) process. The medical imaging software InVesalius and 3D surface reconstruction software Geomagic Studio 12 (Raindrop Geomagic Inc., Morrisville, NC, USA) were utilized to establish the vertebra model, and ANSYS Workbench 16 (Ansys Inc., Canonsburg, PA, USA) simulation software was used to simulate the stress and strain of the motions including vertical body-weighted compression, flexion, extension, lateral bending, and rotation. The intervertebral cage with a hollow cylinder had porosity values of 80-70-60-70-80% (from center to both top side and bottom side) and had porosity values of 60-70-80 (from outside to inside). In addition, according to the contact areas between the vertebras and cages, the shape of the cages can be custom-designed. The cages underwent fatigue tests by following ASTM F2077-17. Then, mechanical property simulations of the cages were conducted for a comparison with the commercially available cages from three companies: Zimmer (Zimmer Biomet Holdings, Inc., Warsaw, IN, USA), Ulrich (Germany), and B. Braun (Germany). The results show that the stress and strain distribution of the cages are consistent with the ones of human bone, and show a uniform stress distribution, which can reduce stress concentration.

9.
Opt Express ; 18(18): 19114-9, 2010 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-20940806

RESUMEN

A simple and novel method is proposed for the fabrication of aspherical SU-8 microlens arrays with a wide range of tunable focal lengths utilizing a soft SU-8 stamping process and an electro-static pulling method. In the proposed approach, an SU-8 stamp incorporating a micro-nozzle array and a reservoir containing unexposed SU-8 is fabricated on a glass substrate using a dose-controlled exposure process. Microlens arrays with diameters ranging from 20 to 500 µm and various radii of curvature are successfully fabricated using the proposed method. The low surface roughness (Ra = 3.84 nm) and high dimensional uniformity of the SU-8 microlens arrays (variation < 5% designed diameter) confirm both the optical quality of the individual microlenses and the general feasibility of the fabrication method. The innovative fabrication method proposed in this study provides a simple and efficient means of producing high quality aspherical microlens arrays with tunable focal lengths.

10.
Sci Rep ; 10(1): 2090, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034260

RESUMEN

The stochastic tunneling-basin hopping method (STUN-BH) was utilized to obtain the most stable peptide S7 configuration (Ac-Ser-Ser-Phe-Pro-Gln-Pro-Asn-CONH2) adsorbed on Au(111) facet. After the most stable S7 configuration was found, molecular dynamics (MD) simulation was conducted to investigate the thermal stability between S7 and Au facet at 300 K in both vacuum and water environment. Moreover, further design sets of peptide sequences on Au(111) facet were used to compare with S7. All molecular simulations were carried out by the large-scale atomic/molecular massively parallel simulator (LAMMPS). The Amber99sb-ILDN force field was employed for modeling the interatomic interaction of peptides, and the TIP3P water was used for the water environment. The CHARMM-METAL force field was introduced to model the S7, PF8 (Ac-Pro-Phe-Ser-Pro-Phe-Ser-Pro-Phe-CONH2) and FS8 (Ac-Phe-Ser-Phe-Ser-Phe-Ser-Phe-Ser-CONH2) interactions with Au(111). The MD simulation results demonstrate that the morphology of Pro affects the adsorption stability of Phe. Therefore, we designed two sequences, PF8 and FS8, to confirm our simulation result through experiment. The present study also develops a novel low-temperature plasma synthesis method to evaluate the facet selecting performance of the designed peptide sequences of S7, PF8, and FS8. The experimental results suggest that the reduced Au atom seed is captured with the designed peptide sequences and slowing growing under room temperature for 72 hours. The experimental results are in the excellent agreement with the simulation finding that the Pro in the designed peptide sequences plays a critical role in the facet selection for Au atom stacking.

11.
RSC Adv ; 10(3): 1319-1330, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35494717

RESUMEN

The terephthalic acid (TPA) supramolecular growth mechanisms on the stearic acid (STA) buffer layer, such as the phase separation and layer-by-layer (LBL) mechanisms, were considered by molecular simulations. The electrostatic surface potential (ESP) charges obtained by the semi-empirical ab initio package VAMP with PM6 were used with the Dreiding force field. The stochastic tunneling-basin hopping-discrete molecular dynamics method (STUN-BH-DMD) was first used to construct the most stable STA buffer layers (STA100, STA120, and STA140) on graphene. At STA100 and STA120, the STA molecule stacking along their long axis is the major mechanism to obtain the stable STA buffer layer. At STA140, the hydrogen bond network between the terminal COOH groups of STA molecules makes the STA buffer layer the most stable, leading to a higher disintegration temperature among all STA coverages. In the early growth of the TPA supramolecule, TPA molecules were first adsorbed by the holes between STA piles. At STA100 and STA120, the subsequent TPA molecules were adsorbed by the TPA molecules within the holes, leading to the phase separation growth. At STA140, the TPA supramolecule tends to grow by the LBL mechanism.

12.
J Funct Biomater ; 11(2)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370007

RESUMEN

A series of biocompatible high-porosity (up to 72.4%) TiZr-based porous bulk metallic glass (BMG) scaffolds were successfully fabricated by hot pressing a mixture of toxic element-free TiZr-based BMG powder and an Al particle space holder. The morphology of the fabricated scaffolds was similar to that of human bones, with pore sizes ranging from 75 to 250 µm. X-ray diffraction patterns and transmission electron microscopy images indicated that the amorphous structure of the TiZr-based BMG scaffolds remained in the amorphous state after hot pressing. Noncytotoxicity and extracellular calcium deposition of the TiZr-based BMG scaffolds at porosities of 32.8%, 48.8%, and 64.0% were examined by using the direct contact method. The results showed that the BMG scaffolds possess high cell viability and extracellular calcium deposition with average cell survival and deposition rates of approximately 170.1% and 130.9%, respectively. In addition, the resulting TiZr-based BMG scaffolds exhibited a considerable reduction in Young's moduli from 56.4 to 2.3 GPa, compressive strength from 979 to 19 MPa, and bending strength from 157 MPa to 49 MPa when the porosity was gradually increased from 2.0% to 72.4%. Based on the aforementioned specific characteristics, TiZr-based BMG scaffolds can be considered as potential candidates for biomedical applications in the human body.

13.
Electrophoresis ; 29(24): 4871-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19130549

RESUMEN

This paper presents a parametric experimental investigation into the electrokinetic instability (EKI) phenomenon within three different types of microfluidic device, namely T-type, cross-shaped, and cross-form with an expansion configuration. The critical electric field strength at which the EKI phenomenon is induced is examined as a function of the conductivity ratio, the microchannel width, the expansion ratio, and the surface treatment of the microchannel walls. It is found that the critical electric field strength associated with the onset of EKI is strongly dependent on the conductivity ratio of the two samples within the microfluidic device and reduces as the channel width increases. The surfaces of the microchannel walls are coated with hydrophilic or hydrophobic organic-based spin-on-glass (SOG) nanofilms for glass-based microchips. The experimental results indicate that no significant difference exists in the critical electric field strengths in the hydrophilic or hydrophobic SOG-coated microchannels, respectively. However, for a given conductivity ratio and microchannel width, the critical strength of the electric field is slightly lower in the SOG-coated microchannels than in the non-coated channels. In general, the results presented in this study demonstrate the potential for designing and controlling on-chip assays requiring the manipulation of samples with high conductivity gradients, and provide a useful general reference for avoiding EKI effects in capillary electrophoresis analysis applications.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Nanoestructuras/química , Conductividad Eléctrica , Electroforesis Capilar/instrumentación , Electroforesis Capilar/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Técnicas Analíticas Microfluídicas/métodos , Propiedades de Superficie
14.
J Chromatogr A ; 1192(1): 198-201, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18407282

RESUMEN

This paper presents a novel method regarding a wavelength-resolved fluorescence detection scheme for high-throughput analysis of bio-samples in a micro-CE chip. Instead of using the conventional laser-induced fluorescence (LIF) microscope equipped with delicate spatial filters and complex control systems, this study adopts a hollow cone illumination generated using a dark-field condenser for exciting fluorescence in the microchannel and an ultraviolet-visible-near-infrared (UV-Vis-NIR) spectrometer for detecting the emission signals. Experimental results show that the proposed system is feasible for simultaneously detecting a mixed sample composed of Atto 610, Rhodamine B and fluorescein isothiocyanate (FITC) fluorescent dyes in a single test run. Furthermore, a mixed bio-sample composed of two mixed 16-mer single-stranded DNAs labeled with Cy3 and FITC fluorescent dyes is also successfully detected with the proposed system. The measured limit of detection (LOD) for detecting FITC of the proposed system can be as low as 5.4x10(-6)M (S/N=3). This proposed detection method has shown its potential on RNA identification and DNA sequencing applications.


Asunto(s)
Electroforesis Capilar/métodos , Espectrometría de Fluorescencia/instrumentación , Electroforesis Capilar/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación
15.
J Chromatogr A ; 1194(2): 231-6, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18485353

RESUMEN

This paper presents a capillary electrophoresis poly(methyl methacrylate) (PMMA) based microchip for electrochemical detection applications featuring embedded gold nanoelectrode ensemble (GNEE) working and decoupler electrodes. In fabricating the microchip, the GNEE films are pressed directly onto the metallic electrode structures using a hot embossing technique, and the microfluidic channels are then sealed using a low-temperature azeotropic solvent bonding method. The detection performance of the microchip is evaluated using dopamine and catechol analytes for illustration purposes. The experimental results show that the GNEE working electrode provides a significantly higher signal response than that obtained from a bulk gold electrode when applied to the detection of dopamine analyte. Compared to a conventional bulk palladium decoupler electrode, the GNEE decoupler electrode reduces both the amplitude of the charge current (3.5 nA vs. 18.7 nA) and the baseline drift at higher separation voltages. The measured baseline current drift for the microchip equipped the proposed GNEE decoupler electrode is around three times smaller than the microchip with the palladium decoupler electrode under the applied separation electric field from 40 V/cm to 240 V/cm. Finally, when detecting a mixture of 1mM dopamine and 1mM catechol, the calculated signal response of the microchip with a GNEE decoupler electrode is approximately five times higher than that obtained from a microchip with a bulk Pd decoupler electrode, resulting in the detection limit of 1 microM for the proposed GNEE-based microchip device. Overall, the results indicate that the proposed capillary electrophoresis-electrochemical detection (CE-ED) microchip with embedded GNEE working and decoupler electrodes provides an ideal solution for sample detection in lab-on-a-chip and micro total analysis applications.


Asunto(s)
Electroforesis Capilar/instrumentación , Electroforesis Capilar/métodos , Oro/química , Microelectrodos , Catecoles/análisis , Dopamina/análisis , Electroquímica , Polimetil Metacrilato , Reproducibilidad de los Resultados
16.
RSC Adv ; 8(29): 16139-16145, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35542220

RESUMEN

This study presents a novel microfluidic chip that can achieve on-demand gold nanoparticle (AuNP) synthesis using atmospheric pressure helium plasma and on-site mercury ion detection. Instead of using conventional chemical reaction methods, this chip uses helium plasma as the reducing agent to reduce gold ions and to synthesize AuNP, such that there is no residual reducing agent in the solution after removing the external electric field for plasma generation. The plasma discharge, gas-liquid separation, liquid collection and mercury ion detection can be achieved by this proposed microfluidic chip. The synthesized gold nanoparticles are further functionalized by 3-mercaptopropionic acid (3-MPA) for mercury ion detection. The 3-MPA-capped gold nanoparticles aggregate and result in a colour change of the solution due to the existence of Hg2+. The absorption spectra of the solution shifts from red to blue due to the cluster aggregation. The concentration of Hg2+ can be quantitatively determined by UV-Vis spectrometry, and the limit of detection was found to be 10-6 M (0.2 ppm). This developed integrated microfluidic device provides a simple and on-demand method for synthesis of AuNPs and Hg2+ detection in a single chip.

17.
J Chromatogr A ; 1165(1-2): 213-8, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17692860

RESUMEN

This paper proposes a poly(methyl methacrylate) (PMMA) based microchip with an integrated gold nanoelectrode ensemble (GNEE) and a quartet-T loading channel for in-column urea/urease reactions and electrochemical detections. The on-chip GNEE electrode is fabricated using an electrodeless deposition process on a thin polycarbonate (PC) film and bonded directly onto a PMMA substrate to carry out high-performance electrochemical detections. The in-column bio-catalytic reaction of urea/urease is successfully demonstrated utilizing a novel approach based on the different electrokinetic mobilities of urea and urease in capillary electrophoresis (CE) channel. The experimental results significantly show that the GNEE electrode provides a better detection response for the reaction product of ammonia (NH(4)(+)) than a conventional planar gold electrode. The detection results demonstrate a satisfactory determination coefficient (R(2) value) and high reproducibility with a detection limit of 14.8 and 62.8 microM while detecting standard ammonia solution and the urea/urease reaction product of NH(4)(+), respectively. These results confirm the capability of the proposed device for the high-resolution CE-electrochemical detection (CE-ED) of bioanalytical reactions.


Asunto(s)
Electroquímica , Electroforesis Capilar/métodos , Procedimientos Analíticos en Microchip , Microelectrodos , Electroquímica/instrumentación , Electroquímica/métodos , Diseño de Equipo/instrumentación , Diseño de Equipo/métodos , Nanoestructuras , Polimetil Metacrilato , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/metabolismo , Reproducibilidad de los Resultados , Urea/metabolismo , Ureasa/metabolismo
18.
Biosystems ; 90(1): 242-52, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17029765

RESUMEN

An algorithm based on a modified sticker model accompanied with an advanced MEMS-based microarray technology is demonstrated to solve SAT problem, which has long served as a benchmark in DNA computing. Unlike conventional DNA computing algorithms needing an initial data pool to cover correct and incorrect answers and further executing a series of separation procedures to destroy the unwanted ones, we built solutions in parts to satisfy one clause in one step, and eventually solve the entire Boolean formula through steps. No time-consuming sample preparation procedures and delicate sample applying equipment were required for the computing process. Moreover, experimental results show the bound DNA sequences can sustain the chemical solutions during computing processes such that the proposed method shall be useful in dealing with large-scale problems.


Asunto(s)
Biología Computacional/métodos , Computadores Moleculares , ADN/química , Biología Molecular/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Algoritmos , Simulación por Computador , Metodologías Computacionales , Matemática , Modelos Genéticos , Modelos Teóricos , Conformación de Ácido Nucleico , Nucleótidos
19.
Biomicrofluidics ; 10(1): 011904, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26858810

RESUMEN

This research reports a novel method for depth position measurement of fast moving objects inside a microfluidic channel based on the chromatic aberration effect. Two band pass filters and two avalanche photodiodes (APD) are used for rapid detecting the scattered light from the passing objected. Chromatic aberration results in the lights of different wavelengths focus at different depth positions in a microchannel. The intensity ratio of two selected bands of 430 nm-470 nm (blue band) and 630 nm-670 nm (red band) scattered from the passing object becomes a significant index for the depth information of the passing object. Results show that microspheres with the size of 20 µm and 2 µm can be resolved while using PMMA (Abbe number, V = 52) and BK7 (V = 64) as the chromatic aberration lens, respectively. The throughput of the developed system is greatly enhanced by the high sensitive APDs as the optical detectors. Human erythrocytes are also successfully detected without fluorescence labeling at a high flow velocity of 2.8 mm/s. With this approach, quantitative measurement for the depth position of rapid moving objects inside a sealed microfluidic channel can be achieved in a simple and low cost way.

20.
Biomicrofluidics ; 9(2): 022402, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25825613

RESUMEN

This research presents a multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen (BUN) and glucose detection in human whole blood. A novel enzyme-doped thread coated with a thin polyvinylchloride (PVC) membrane is produced for on-site electrochemical detection of urea and glucose in whole blood. Multiple enzymes can be directly applied to the thread without delicate pretreatment or a surface modification process prior to sealing the thread with PVC membrane. Results indicate that the developed device exhibits a good linear dynamic range for detecting urea and glucose in concentrations from 0.1 mM-10.0 mM (R(2 )= 0.9850) and 0.1 mM-13.0 mM (R(2 )= 0.9668), which is suitable for adoption in detecting the concentrations of blood urea nitrogen (BUN, 1.78-7.12 mM) and glucose (3.89-6.11 mM) in serum. The detection result also shows that the developed thread-based microfluidic system can successfully separate and detect the ions, BUN, and glucose in blood. The calculated concentrations of BUN and glucose ante cibum (glucose before meal) in the whole blood sample are 3.98 mM and 4.94 mM, respectively. The developed thread-based microfluidic system provides a simple yet high performance for clinical diagnostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA